Skip to main content
Log in

Measurements of LiNbO3 Properties by Multi-parameter Inversion Based on Acoustic Microcopy

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

This paper expands on a theoretical model between the mechanical and electrical properties with acoustic characteristics to obtain the theoretical dispersion curve for Y-cut LiNbO3 piezoelectric plate. The experimental dispersion curve of the LiNbO3 plate is extracted via V(f,z) analysis through defocusing measurements based on an acoustic microscopy and a lens-less line focusing transducer. The objective function of the inversion depends on the experimental dispersion curve. The inversion method adopts a hybrid particle-swarm-based simulated-annealing (PS-B-SA) optimization, which is used for joint inversion of the mechanical and electrical parameters of LiNbO3. The theoretical dispersion curve will approach the experimental dispersion curve by constantly modifying the mechanical and electrical parameters in the theoretical model: the elastic constants (C11, C12, C22, C23, C25, C55), piezoelectric constants (e11, e12, e26, e33), and dielectric constants (ε11, ε22). The inversed series of constants are those who make the theoretical dispersion curve most fit the experimental ones. The results show that the inversed mechanical and electrical parameters agree well with the reported values, and the stability and accuracy of the inversion is acceptable. This research provides a useful tool to characterize the mechanical and electrical properties of piezoelectric materials simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Sessler, G.M.: Piezoelectricity in polyvinylidene fluoride. J. Acoust. Soc. Am. 70(6), 1596–1608 (1981)

    Article  Google Scholar 

  2. Wang, T.C., Han, X.L.: Fracture mechanics of piezoelectric materials. Int. J. Fract. 98(1), 15–35 (1999)

    Article  Google Scholar 

  3. Wu, S., Chen, Q.C., Zhang, Z., Fu, X., Hu, X.D., Hu, X.T.: Calibration of the spring constant of AFM micro-cantilever based on bending method. Chin. J. Sci. Instrum. 33(11), 2446–2453 (2012)

    Google Scholar 

  4. Song, G.R., He, C.F., Liu, Z.H., Huang, Y., Wu, B.: Measurement of elastic constants of limited-size piezoelectric ceramic sample by ultrasonic method. Measurement 42(8), 1214–1219 (2009)

    Article  Google Scholar 

  5. He, C.F., Lu, Y., Song, G.R., Wu, B., Lee, Y.-C.: Design, fabrication of line-focus lens-less PVDF transducers and applications on measuring surface acoustic waves with V(f, z) analytical method. Chin. J. Mech. Eng. 47(24), 1–7 (2011)

    Article  Google Scholar 

  6. Lu, Y., He, C.F., Song, G.R., Cheng, H.C., Lee, Y.-C.: Elastic properties inversion of an isotropic plate by hybrid particle swarm-based-simulated annealing optimization technique from leaky lamb wave measurements using acoustic microscopy. J. Nondestruct Eval. 33(4), 651–662 (2014)

    Article  Google Scholar 

  7. Cheeke, J.D.N., Zhang, Y., Wan, Z., Lukacs, M., Sayer, M.: Characterization for piezoelectric films using composite resonators. Proc. IEEE Ultrason. Symp. 2, 1125–1128 (1998)

    Google Scholar 

  8. Xu, F.Q., Chu, F., Trolier-Mckinstry, S.: Longitudinal piezoelectric coefficient measurement for bulk ceramics and thin films using pneumatic pressure rig. J. Appl. Phys. 86(1), 588–594 (1999)

    Article  Google Scholar 

  9. Marc-Alexandre, D., Paul, M.: Measurement of the effective transverse piezoelectric coefficient e31 of AlN and Pb (Zrx, Ti1-x) O3 thin films. Sens. Actuators, A 77(2), 106–112 (1999)

    Article  Google Scholar 

  10. Yin, J.H., Jiang, B., Cao, W.W.: Elastic, piezoelectric, and dielectric properties of 0.955Pb(Zn1/3Nb2/3)O3-0.45PbTiO3 single crystal with designed multidomains. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 285–291 (2000)

    Article  Google Scholar 

  11. Park, G.-T., Choi, J.-J., Ryu, J.H., Fan, H.Q., Kim, H.E.: Measurement of piezoelectric coefficients of lead zirconate titanate thin films by strain-monitoring pneumatic loading method. Appl. Phys. Lett. 80(24), 4605–4608 (2002)

    Article  Google Scholar 

  12. Kok, S.L., Lau, K.-T., Ahsan, Q.: Substrate-free thick-film lead zirconate titanate (PZT) performance measurement using berlincourt method. Adv. Mater. Res. 895, 204–210 (2014)

    Article  Google Scholar 

  13. Maynard, J.D.: The use of piezoelectric film and ultrasound resonance to determine the complete elastic tensor in one measurement. J. Acoust. Soc. Am. 91(3), 1754 (1992)

    Article  Google Scholar 

  14. Gao, Y., Xie, S.L.: Particle swarm optimization algorithms based on simulated annealing. Comput. Eng. Appl. 40(1), 47–50 (2004)

    Google Scholar 

  15. Gao, S., Yang, J.Y., Wu, X.J., Lin, T.M.: Particle swarm optimization based on the ideal of simulated annealing algorithm. Comput. Appl. Softw. 22(1), 103–104 (2005)

    Google Scholar 

  16. Wang, H.Q., Cao, C.X.: Parallel particle swarm optimization based on simulated annealing. Control Decis. 20(5), 500–504 (2005)

    MathSciNet  Google Scholar 

  17. Zhang, Y., Gong, D.W., Zhang, W.Q.: A simplex method based improved particle swarm optimization and analysis on its global convergence. Acta. Automatica. Sinica. 35(3), 289–298 (2009)

    Article  MathSciNet  Google Scholar 

  18. Meier, R.W., Rix, G.J.: Initial study of surface wave inversion using artificial neural networks. Geotech. Test. J. 16(4), 425–431 (1993)

    Article  Google Scholar 

  19. Krishnan, B., Rao, N.S.: Inversion of composite material elastic constants from ultrasonic bulk wave phase velocity data using genetic algorithms. Composites B 29(2), 171–180 (1998)

    Article  Google Scholar 

  20. Kundu, T.: Inversion of acoustic material signature of layered solids. J. Acoust. Soc. Am. 91(2), 591–600 (1992)

    Article  Google Scholar 

  21. Song, X.H., Tang, L., Lv, X.C., Fang, H.P., Gu, H.: Application of particle swarm optimization to interpret Rayleigh wave dispersion curves. J. Appl. Geophys. 84, 1–13 (2012)

    Article  Google Scholar 

  22. Xu, J.Q., Song, X.H.: Ant colony optimization for nonlinear inversion of rayleigh waves. Int. Conf. Intell. Comput. 6840, 370–377 (2011)

    Google Scholar 

  23. Auld, B.A.: Acoustic fields and waves in solid. Krieger, Huntington (1990)

    Google Scholar 

  24. Lee, Y.-C.: Measurements of dispersion curves of leaky Lamb waves using a lens-less line-focus transducer. Ultrasonics 39(4), 297–306 (2001)

    Article  Google Scholar 

  25. Kushibiki, J.-I., Chubachi, N.: Material characterization by line-focus-beam acoustic microscope. IEEE Trans. Sonics Ultrason. 32(2), 189–212 (1985)

    Article  Google Scholar 

  26. Lee, Y.-C., Ko, S.-P.: Measuring dispersion curves of acoustic waves using PVDF line-focus transducers. NDT E Int. 34(3), 191–197 (2001)

    Article  Google Scholar 

  27. Lee, Y.-C., Chu, C.C.: A double-layered line-focusing PVDF transducer and V(z) measurement of surface acoustic wave. Jpn. J. Appl. Phys. 44(3), 1462–1467 (2005)

    Article  MathSciNet  Google Scholar 

  28. Song, G., Hong, G., Lu, Y., Xu, Y., Qin, D., Wu, B., He, C.: Inversion of elastic constants of anisotropic (100) Silicon based on surface wave velocity by acoustic microscopy using particle swarm-based-simulated annealing optimization. J. Nondestruct Eval. 34(4), 34–43 (2015)

    Article  Google Scholar 

  29. Gong, C., Wang, Z.L.: Master MATLAB Optimized Calculation. Publishing House of Electronics Industry, Beijing (2014)

    Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (Grant Nos. 51505013, 51575015, and 11527801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guorong Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, Y., Gao, J., Song, G. et al. Measurements of LiNbO3 Properties by Multi-parameter Inversion Based on Acoustic Microcopy. J Nondestruct Eval 37, 56 (2018). https://doi.org/10.1007/s10921-018-0503-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-018-0503-3

Keywords

Navigation