Skip to main content
Log in

Computational Time Reversal for NDT Applications Using Experimental Data

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

A model-based non destructive testing (NDT) method is proposed for damage identification in elastic structures, incorporating computational time reversal (TR) analysis. Identification is performed by advancing elastic wave signals, measured at discrete sensor locations, backward in time. In contrast to a previous study, which was purely numerical and employed only synthesized data, here an experimental system with displacement sensors is used to provide physical measurements at the sensor locations. The performance of the system is demonstrated by considering two problems of a thin metal plate in a plane stress state. The first problem, which represents passive damage identification, consists in finding the location of a small impact region from remote measurements. The second problem is the identification of the location of a square hole in the plate. The difficulties one encounters in applying this identification method and ways to overcome them are described. It is concluded that while this is a viable model-based identification method, which may lead, after further development, to a practical NDT procedure, one must be careful when drawing conclusions about its performance based solely on numerical experiments with synthesized data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Schmerr, L.W., Song, J.S.: Ultrasonic Nondestructive Evaluation Systems: Models and Measurements. Springer, Berlin (2007)

    Book  Google Scholar 

  2. Drinkwater, B.W., Wilcox, P.D.: Ultrasonic arrays for non-destructive evaluation: a review. Nondestruct. Test. Eval. Int. 39, 525–541 (2006)

    Google Scholar 

  3. Wall, M., Burch, S.F., Lilley, J.: Review of models and simulators for NDT reliability (POD). Insight 51, 612–619 (2009)

    Article  Google Scholar 

  4. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems, 2nd edn. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  5. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  6. Stavroulakis, G.E.: Inverse and Crack Identification Problems in Engineering Mechanics. Kluwer, Dordrecht (2001)

    Book  MATH  Google Scholar 

  7. Liu, G.R., Han, X.: Computational Inverse Techniques in Nondestructive Evaluation. CRC Press, London (2003)

    Book  MATH  Google Scholar 

  8. Ali, A.S., Nikolova, N.K., Sangary, N.T.: Near-field microwave non-destructive testing for defect shape and material identification. Nondestruct. Test. Eval. 21, 79–93 (2006)

    Article  Google Scholar 

  9. Kalogeropoulos, A., van der Kruk, J., Hugenschmidt, J., Bikowski, J., Bruhwiler, E.: Full-waveform GPR inversion to assess chloride gradients in concrete. Nondestruct. Test. Eval. Int. 57, 74–84 (2013)

    Google Scholar 

  10. Goenezen, S., Barbone, P.E., Oberai, A.A.: Solution of the nonlinear elasticity imaging inverse problem: the incompressible case. Comput. Methods Appl. Mech. Eng. 200(13–16), 1406–1420 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hicken, J.E., Li, J., Sahni, O., Oberai, A.A.: Adjoint consistency analysis of residual-based variational multiscale methods. J. Comput. Phys. 255, 396–406 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cho, Y.: Model-based guided wave NDE: the evolution of guided wave NDE from ‘Magic’ to physically based engineering tool. J. Nondestruc. Eval. 31, 324–338 (2012)

    Article  Google Scholar 

  13. Starek, L., Inman, D.J.: Design of nonproportional damped systems via symmetric positive inverse problems. ASME J. Vib. Acoust. 126, 212–219 (2004)

    Article  Google Scholar 

  14. Allison, T.C., Miller, A.K., Inman, D.J.: A time-varying identification method for mixed response measurements. J. Sound Vib. 319, 850–868 (2009)

    Article  Google Scholar 

  15. Erturk, A., Inman, D.J.: Parameter identification and optimization in piezoelectric energy harvesting: analytical relations, asymptotic analysis and experimental validations. IMechE J. Syst. Control Eng. 225, 485–496 (2011)

    Google Scholar 

  16. Seher, M., Huthwaite, P., Lowe, M.J.S., Michael, P.B.: Model-based design of low frequency lamb wave EMATs for mode selectivity. J. Nondestruct. Eval. 34, 22-1–22-16 (2015)

    Article  Google Scholar 

  17. Chang, Y.F., Ton, R.C.: Kirchhoff migration of ultrasonic images. Mater. Eval. 59, 413–417 (2001)

    Google Scholar 

  18. Hoegh, K., Khazanovich, L., Ferraro, C., Clayton, D.: Ultrasonic linear array validation via concrete test blocks. In: 41st Annual Review of Progress in Quantitative Nondestructive Evaluation, Vol. 34, pp. 83–93 (2015)

  19. Grohmann, M., Niederleithinger, E., Buske, S.: Geometry determination of a foundation slab using the ultrasonic echo technique and geophysical migration methods. J. Nondestruct. Eval. 35, 17-1–17-13 (2016)

    Article  Google Scholar 

  20. Fink, M., Wu, F., Cassereau, D., Mallart, R.: Imaging through inhomogeneous media using time reversal mirrors. Ultrason. Imaging 13, 179–199 (1991)

    Article  Google Scholar 

  21. Givoli, D.: Time reversal as a computational tool in acoustics and elastodynamics. J. Comput. Acoust. 22, 1430001-1–1430001-40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Derveaux, G., Papanicolaou, G., Tsogka, C.: Time reversal imaging for sensor networks with optimal compensation in time. J. Acoust. Soc. Am. 121, 2071–2085 (2007)

    Article  Google Scholar 

  23. Zumpano, G., Meo, M.: A new nonlinear elastic time reversal acoustic method for the identification and localisation of stress corrosion cracking in welded plate-like structures—a simulation study. Int. J. Solids Struct. 44, 3666–3684 (2007)

    Article  MATH  Google Scholar 

  24. Buerkle, A., Sarabandi, K.: Non-destructive evaluation of elastic targets using acousto-electromagnetic wave interaction and time reversal focusing. IEEE Trans. Antennas Propag. 57, 3628–3637 (2009)

    Article  Google Scholar 

  25. Bavu, E., Berry, A.: High-resolution imaging of sound sources in free field using a numerical time-reversal sink. Acta Acust. United Acust. 95, 595–606 (2009)

    Article  Google Scholar 

  26. Reyes-Rodriguez, S., Lei, N., Crowgey, B., Udpa, L., Udpa, S.S.: Time reversal and microwave techniques for solving inverse problem in non-destructive evaluation. Nondestruct. Test. Eval. Int. 62, 106–114 (2014)

  27. Fan, C.G., Pan, M.C., Luo, F.L., Drinkwater, B.W.: Multi-frequency time-reversal-based imaging for ultrasonic nondestructive evaluation using full matrix capture. IEEE Trans Ultrason. Ferroelectr. Freq. Control 61, 2067–2074 (2014)

    Article  Google Scholar 

  28. Givoli, D., Turkel, E.: Time reversal with partial information for wave refocusing and scatterer identification. Comput. Methods Appl. Mech. Eng. 213–216, 223–242 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Levi, I., Turkel, E., Givoli, D.: Time reversal for elastic wave refocusing and scatterer location recovery. J. Comput. Acoust. 23, 1450013-1–1450013-29 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  30. Amitt, E., Givoli, D., Turkel, E.: Time reversal for crack identification. Comput. Mech. 54, 443–459 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hughes, T.J.R.: The Finite Element Method. Prentice Hall, Englewood Cliffs (1987)

    MATH  Google Scholar 

  32. Bal, G., Ryzhik, L.: Time reversal and refocusing in random media. SIAM J. Appl. Math. 63, 1475–1498 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  33. Treiber, M.A.: Optimization for Computer Vision. Springer, London (2013)

    Book  MATH  Google Scholar 

  34. Rabinovich, D., Givoli, D., Vigdergauz, S.: Crack identification by ‘arrival time’ using XFEM and a genetic algorithm. Int. J. Numer. Methods Eng. 77, 337–359 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, H., Waisman, H., Betti, R.: Nondestructive identification of multiple flaws using XFEM and a topologically adapting artificial bee colony algorithm. Int. J. Numer. Methods Eng. 95(10), 871–900 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sun, H., Waisman, H., Betti, R.: A multiscale flaw detection algorithm based on XFEM. Int. J. Numer. Methods Eng. 100(7), 477–503 (2014)

    Article  MATH  Google Scholar 

  37. Sun, H., Waisman, H., Betti, R.: A sweeping window method for detection of flaws using an explicit dynamic XFEM and absorbing boundary layers. Int. J. Numer. Methods Eng. 105, 1014–1040 (2016)

    Article  MathSciNet  Google Scholar 

  38. Schillinger, D., Rank, E.: An unfitted hp-adaptive finite element method based on hierarchical B-splines for interface problems of complex geometry. Comput. Methods Appl. Mech. Eng. 200, 47–48 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Seidl, R., Rank, E.: Iterative time reversal based flaw identification. Comput. Math. Appl. 72, 879–892 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Amitt, E., Givoli, D., Turkel, E.: Combined arrival-time imaging and time reversal for scatterer identification. Comput. Methods Appl. Mech. Eng. 313, 279–302 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of D.G. was partly supported by the fund provided through the Lawrence and Marie Feldman Chair in Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Rabinovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopatin, C., Rabinovich, D., Givoli, D. et al. Computational Time Reversal for NDT Applications Using Experimental Data. J Nondestruct Eval 36, 48 (2017). https://doi.org/10.1007/s10921-017-0424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-017-0424-6

Keywords

Navigation