Skip to main content

Advertisement

Log in

Statistical Analysis to Find out the Optimal Locations for Non Invasive Brain Stimulation

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Non-invasive brain electrical stimulation (NIBES) techniques are progressively used for modulation of neuronal membrane potentials, which alters cortical excitability. The neuronal activity depends on position of channel locations for electrodes and the amount and direction of injected weak current through the target neurons area. In the present paper hybrid near infrared spectroscopy and electroencephalogram (NIRS-EEG) open access dataset for brain computer interface (BCI) has been used to find the best locations for NIBES. The percentage oxygen saturation has been calculated with the help of provided NIRS experimental dataset of changes in concentration of oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) in thirty-six scalp site locations of twenty-eight healthy subjects. The variation in standard deviation have been calculated for given pre-processed EEG signals of thirty locations for same twenty-eight healthy subjects. The statistical one-way ANOVA method has been used to find out the best channels and locations which are having less variation in all motion artifacts. In this method, F value is calculated for these locations and those locations are selected which are significant at 99% confidence interval (P < 0.01). In this study, out of sixty-six locations sixteen best locations have been selected for non-invasive brain electrical stimulation. This pilot study has been used to find out the appropriate locations on the scalp sites to place the electrodes to provide weak direct current stimulation which are less affected by motion artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Organization W.H., et al. (2018) Towards a dementia plan: a who guide

  2. Wang H., Naghavi M., Allen C., Barber R.M., Bhutta Z.A., Carter A., Casey D.C., Charlson F.J., Chen A.Z., Coates M.M., et al: Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the global burden of disease study 2015. Lancet 388 (10053): 1459–1544, 2016

    Article  Google Scholar 

  3. Pu D.-M., Gao D.-Q., Yuan Y.-B. (2014) A primal analysis system of brain neurons data. Sci. World J., 2014

  4. Scarabino T., Salvolini U., Di Salle F., Duvernoy H., Rabishong P.: Atlas of Morphology and Functional Anatomy of the Brain Berlin: springer, 2006

    Book  Google Scholar 

  5. Sharma G., Chowdhury S.R.: Design of nirs probe based on computational model to find out the optimal location for non-invasive brain stimulation. J. Med. Syst. 42 (12): 244, 2018

    Article  Google Scholar 

  6. Perdue K.L., Diamond S.G.: T1 magnetic resonance imaging head segmentation for diffuse optical tomography and electroencephalography. J. Biomed. Opt. 19 (2): 026011, 2014

    Article  Google Scholar 

  7. Knotkova H., Nitsche M.A., Bikson M., Woods A.J. (2019) Practical guide to transcranial direct current stimulation: principles, procedures and applications. Springer

  8. Salgado-Ram J., Trejo-Macotela F., Simancas-Acevedo E., Robles-Camarillo D.: Transcranial direct current stimulation for the treatment of depressive disorders: a review of clinical applications. Curr. Psychiatr. Rev. 14 (4): 203–210, 2018

    Article  Google Scholar 

  9. Sellaro R., Nitsche M.A., Colzato L.S.: The stimulated social brain: effects of transcranial direct current stimulation on social cognition. Ann. N. Y. Acad. Sci. 1369 (1): 218–239, 2016

    Article  Google Scholar 

  10. Sharma G., Karwal O., Chowdhury S.R.: Non invasive brain stimulation study based on ischemic stroke patients.. In: 2019 41st Annual International Conference of the, IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2019, pp 1461–1464

  11. Thiruppathy S., Muthukumar N.: Mild head injury: revisited. Acta neurochirurgica 146 (10): 1075–1083, 2004

    Article  CAS  Google Scholar 

  12. Masson F., Thicoipe M., Mokni T., Aye P., Erny P., Dabadie P.: Epidemiology of traumatic comas: a prospective population-based study. Brain Injury 17 (4): 279–293, 2003

    Article  Google Scholar 

  13. Golfinos J., Cooper P.: Skull fracture and post-traumatic cerebrospinal fluid fistula, head injury. In: (Cooper P.R., Golfinos J.G., Eds.) 4th edition., 2000

  14. Organization W.H. (2006) Neurological disorders: public health challenges. World Health Organization

  15. Kadosh R.C. (2014) The Stimulated Brain: Cognitive Enhancement using Non-Invasive Brain Stimulation. Elsevier

  16. Khadka N., Woods A.J., Bikson M.: Transcranial direct current stimulation electrodes.. In: Practical Guide to Transcranial Direct Current Stimulation. Springer, 2019, pp 263–291

  17. Paulus W.: Transcranial electrical stimulation (tes–tdcs; trns, tacs) methods. Neuropsychol. Rehab. 21 (5): 602–617, 2011

    Article  Google Scholar 

  18. Nitsche M.A., Cohen L.G., Wassermann E.M., Priori A., Lang N., Antal A., Paulus W., Hummel F., Boggio P.S., Fregni F., et al: Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 1 (3): 206–223, 2008

    Article  Google Scholar 

  19. Nitsche M.A., Paulus W.: Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J. Physiol. 527 (3): 633–639, 2000

    Article  CAS  Google Scholar 

  20. Nitsche M., Liebetanz D., Tergau F., Paulus W.: Modulation of cortical excitability by transcranial direct current stimulation. Nervenarzt 73 (4): 332–335, 2002

    Article  CAS  Google Scholar 

  21. Wassermann E.M., Grafman J., Berry C., Hollnagel C., Wild K., Clark K., Hallett M.: Use and safety of a new repetitive transcranial magnetic stimulator. Electroencephalogr. Clin. Neurophysiol./Electromyogr. Motor Control 101 (5): 412–417, 1996

    Article  CAS  Google Scholar 

  22. Sale M.V., Mattingley J.B., Zalesky A., Cocchi L.: Imaging human brain networks to improve the clinical efficacy of non-invasive brain stimulation. Neurosci. Biobehav. Rev. 57: 187–198, 2015

    Article  Google Scholar 

  23. Jackson M.P., Rahman A., Lafon B., Kronberg G., Ling D., Parra L.C., Bikson M.: Animal models of transcranial direct current stimulation: methods and mechanisms. Clin. Neurophysiol. 127 (11): 3425–3454, 2016

    Article  Google Scholar 

  24. Platz T.: Evidence-based guidelines and clinical pathways in stroke rehabilitation–an international perspective. Front. Neurol. 10: 200, 2019

    Article  Google Scholar 

  25. Jindal U., Sood M., Dutta A., Chowdhury S.R.: Development of point of care testing device for neurovascular coupling from simultaneous recording of eeg and nirs during anodal transcranial direct current stimulation. IEEE J. Transl. Eng. Health Med. 3: 1–12, 2015

    Article  Google Scholar 

  26. Mullins P.G., McGonigle D.J., O’Gorman R.L., Puts N.A., Vidyasagar R., Evans C.J., Edden R.A., et al.: Current practice in the use of mega-press spectroscopy for the detection of gaba. Neuroimage 86: 43–52, 2014

    Article  CAS  Google Scholar 

  27. Erdogan E., Saydam S., Kurt A., Karamursel S.: Anodal transcranial direct current stimulation of the motor cortex in healthy volunteers. Neurophysiology 50 (2): 124–130, 2018

    Article  Google Scholar 

  28. Pereira J.B., Junqué C., Bartrés-Faz D.M, M.rtí J., Sala-Llonch R., Compta Y., Falcón C., Vendrell P., Pascual-Leone Á., Valls-Solé J., et al: Modulation of verbal fluency networks by transcranial direct current stimulation (tdcs) in parkinson’s disease. Brain Stimul. 6 (1): 16–24, 2013

    Article  Google Scholar 

  29. Bikson M., Datta A., Rahman A., Scaturro J.: Electrode montages for tdcs and weak transcranial electrical stimulation: role of “return” electrode’s position and size. Clin. Neurophysiol.: Official J. Int. Fed. Clin. Neurophysiol. 121 (12): 1976, 2010

    Article  CAS  Google Scholar 

  30. Kuo H.-I., Bikson M., Datta A., Minhas P., Paulus W., Kuo M.-F., Nitsche M.A.: Comparing cortical plasticity induced by conventional and high-definition 4× 1 ring tdcs: a neurophysiological study. Brain Stimul. 6 (4): 644–648, 2013

    Article  Google Scholar 

  31. Sharma G., Chowdhury S.R.: Enhancement in focality of non-invasive brain stimulation through high definition (hd) anodal transcranial direct current stimulation (tdcs) techniques.. In: 2019 IEEE Conference on computational intelligence in bioinformatics and computational biology (CIBCB). IEEE, 2019, pp 1–5

  32. Villamar M.F., Volz M.S., Bikson M., Datta A., DaSilva A.F., Fregni F.: Technique and considerations in the use of 4x1 ring high-definition transcranial direct current stimulation (hd-tdcs). JoVE (J. Visual. Exper.) 77: e50309, 2013

    Google Scholar 

  33. Sharma G., Arora Y., Chowdhury S.R.: A 4x1 high-definition transcranial direct current stimulation device for targeting cerebral micro vessels and functionality using nirs.. In: 2016 IEEE international symposium on nanoelectronic and information systems (iNIS). IEEE, 2016, pp 47–51

  34. Jurcak V., Tsuzuki D., Dan I: 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34 (4): 1600–1611, 2007

    Article  Google Scholar 

  35. Machado A., Cai Z., Pellegrino G., Marcotte O., Vincent T., Lina J., Kobayashi E., Grova C.: Optimal positioning of optodes on the scalp for personalized functional near-infrared spectroscopy investigations. J. Neurosc. Methods 309: 91–108, 2018

    Article  CAS  Google Scholar 

  36. Oliveira A.S., Schlink B.R., Hairston W.D., König P., Ferris D.P.: Induction and separation of motion artifacts in eeg data using a mobile phantom head device. J. Neural Eng. 13 (3): 036014, 2016

    Article  Google Scholar 

  37. Shin J., von Lühmann A., Blankertz B., Kim D.-W., Jeong J., Hwang H.-J., Müller K.-R.: Open access dataset for eeg+ nirs single-trial classification. IEEE Trans. Neural Syst. Rehabil. Eng. 25 (10): 1735–1745, 2016

    Article  Google Scholar 

  38. Field A. (2013) Discovering Statistics Using IBM SPSS Statistics. Sage

  39. Guo Y., Wang Y., Marin T., Easley K., Patel R.M., Josephson C.D.: Statistical methods for characterizing transfusion-related changes in regional oxygenation using near-infrared spectroscopy (nirs) in preterm infants. Stat. Methods Med. Res. 28 (9): 2710–2723, 2019

    Article  Google Scholar 

  40. Shin J., von Lühmann A., Blankertz B., Kim D.-W., Jeong J., Hwang H.-J., Müller K.-R.: Open access dataset for eeg + nirs single-trial classification. IEEE Trans. Neural Syst. Rehabil. Eng. 25 (10): 1735–1745, 2017

    Article  Google Scholar 

  41. Bale G., Elwell C.E., Tachtsidis I.: From jöbsis to the present day: a review of clinical near-infrared spectroscopy measurements of cerebral cytochrome-c-oxidase. J. Biomed. Opt. 21 (9): 091307, 2016

    Article  Google Scholar 

  42. Brasil-Neto J.P.: Learning, memory, and transcranial direct current stimulation. Front. Psychiatry 3: 80, 2012

    Article  Google Scholar 

  43. Monti A., Ferrucci R., Fumagalli M., Mameli F., Cogiamanian F., Ardolino G., Priori A.: Transcranial direct current stimulation (tdcs) and language. J. Neurol. Neurosurg. Psychiatry 84 (8): 832–842, 2013

    Article  Google Scholar 

  44. Martin D.M., Yeung K., Loo C.K.: Pre-treatment letter fluency performance predicts antidepressant response to transcranial direct current stimulation. J. Affect. Disorders 203: 130–135, 2016

    Article  Google Scholar 

  45. Ruggiero F., Lavazza A., Vergari M., Priori A., Ferrucci R.: Transcranial direct current stimulation of the left temporal lobe modulates insight. Creativ. Res. J. 30 (2): 143–151, 2018

    Article  Google Scholar 

  46. Nikolin S., Boonstra T.W., Loo C.K., Martin D.: Combined effect of prefrontal transcranial direct current stimulation and a working memory task on heart rate variability. PloS one 12 (8): e0181833, 2017

    Article  Google Scholar 

  47. Lefaucheur J. -P., Antal A., Ayache S.S., Benninger D.H., Brunelin J., Cogiamanian F., Cotelli M., De Ridder D., Ferrucci R., Langguth B., et al: Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tdcs). Clin. Neurophysiol. 128 (1): 56–92, 2017

    Article  Google Scholar 

  48. Westwood S.J., Romani C.: Transcranial direct current stimulation (tdcs) modulation of picture naming and word reading: A meta-analysis of single session tdcs applied to healthy participants. Neuropsychologia 104: 234–249, 2017

    Article  Google Scholar 

  49. Alix-Fages C., Romero-Arenas S., Castro-Alonso M., Colomer-Poveda D., Río-Rodriguez D., Jerez-Martínez A., Fernandez-del Olmo M., Márquez G.: Short-term effects of anodal transcranial direct current stimulation on endurance and maximal force production: a systematic review and meta-analysis. J. Clin. Med. 8 (4): 536, 2019

    Article  Google Scholar 

  50. Schwartz T.H.: Neurovascular coupling and epilepsy: hemodynamic markers for localizing and predicting seizure onset. Epilepsy Currents 7 (4): 91–94, 2007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Sharma.

Ethics declarations

This study was funded by Indian Institute of Technology Mandi, Ministry of Electronics and Information Technology (MeitY) and Govt of India. The authors would like to thanks a NIRScout (NIRx GmbH, Berlin, and Germany) and BrainAmp EEG (Brain Products GmbH, Gilching, Germany) for provide open access dataset which was available for free download via: http://doc.ml.tu-berlin.de/hBCI for doing statistical analysis in this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, G., Chowdhury, S.R. Statistical Analysis to Find out the Optimal Locations for Non Invasive Brain Stimulation. J Med Syst 44, 85 (2020). https://doi.org/10.1007/s10916-020-1535-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-020-1535-7

Keywords

Navigation