Skip to main content

Advertisement

Log in

Coronary Calcium Detection Based on Improved Deep Residual Network in Mimics

  • Image & Signal Processing
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Coronary calcium detection in medicine image processing is a hot research topic. According to the low resolution and complex background in medicine image, an improved coronary calcium detection algorithm based on the Single Shot MultiBox Detector (SSD) in Mimics is proposed in this paper. The algorithm firstly uses the aggregate channel feature model to preprocess the image to obtain the suspected calcium area, which greatly reduces the time of single-frame image detection. The basic network VGG-16 is replaced by Resnet-50, which introduces the identity mapping to solve the problem of reducing the detection accuracy when the number of network layers are increased. Finally, the powerful and flexible two-parameter loss function is used to optimize the training deep network and improve the network model generalization ability. Qualitative and quantitative experiments show that the performance of the proposed detection algorithm exceeds the existing calcium detection algorithms, and the detection efficiency is improved while ensuring the accuracy of calcium detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mcclelland, R. L., Jorgensen, N. W., Budoff, M. J. et al., 10-year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: Derivation in the MESA (multi-ethnic study of atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) study and the DHS (Dallas Heart Study).[J]. J. Am. Coll. Cardiol. 66(15):1643–1653, 2015.

    Article  CAS  Google Scholar 

  2. Hecht, H. S., Coronary artery calcium scanning: Past, present, and future[J]. JACC Cardiovasc. Imaging 8(5):579–596, 2015.

    Article  Google Scholar 

  3. Rahhal, M. M., Bazi, Y., Alhichri, H. S. et al., Deep learning approach for active classification of electrocardiogram signals[J]. Inf. Sci. 345(345):340–354, 2016.

    Article  Google Scholar 

  4. Moeskops P, Moeskops P, Wolterink J M, et al. Deep learning for multi-task medical image segmentation in multiple modalities[C]. Medical Image Computing and Computer-Assisted Intervention: 478–486, 2016.

  5. Wolterink, J. M., Leiner, T., Takx, R. A. et al., Automatic coronary calcium scoring in non-contrast-enhanced ECG-triggered cardiac CT with ambiguity detection[J]. IEEE Trans. Med. Imaging 34(9):1867–1878, 2015.

    Article  Google Scholar 

  6. Lloydjones, D. M., Coronary artery calcium scoring: Are we there yet?[J]. J. Am. Coll. Cardiol. 66(15):1654–1656, 2015.

    Article  Google Scholar 

  7. Araki, T., Ikeda, N., Dey, N. et al., Shape-based approach for coronary calcium lesion volume measurement on intravascular ultrasound imaging and its association with carotid intima-media thickness[J]. J. Ultrasound Med. 34(3):469–482, 2015.

    Article  Google Scholar 

  8. Chaikriangkrai, K., Valderrabano, M., Bala, S. K. et al., Abstract 491: Detection of subclinical coronary artery disease by calcium score in patients with atrial fibrillation: Potential clinical implications[J]. Arterioscler. Thromb. Vasc. Biol., 2015.

  9. Vonder, M., Pelgrim, G. J., Huijsse, S. E. et al., Feasibility of spectral shaping for detection and quantification of coronary calcifications in ultra-low dose CT[J]. Eur. Radiol. 27(5):2047–2054, 2017.

    Article  Google Scholar 

  10. Qanadli, S. D., Qanadli, S. D., Jouannic, A. et al., CT attenuation values of blood and myocardium: Rationale for accurate coronary artery calcifications detection with multi-detector CT.[J]. PLoS ONE 10(4), 2015.

    Article  Google Scholar 

  11. Antonopoulos, A. S., Sanna, F., Sabharwal, N. et al., Detecting human coronary inflammation by imaging perivascular fat[J]. Sci. Transl. Med. 9(398), 2017.

    Article  Google Scholar 

  12. Greenland, P., Blaha, M. J., Budoff, M. J. et al., Coronary calcium score and cardiovascular risk[J]. J. Am. Coll. Cardiol. 72(4):434–447, 2018.

    Article  CAS  Google Scholar 

  13. Chang, H., Lin, F. Y., Lee, S. et al., Coronary atherosclerotic precursors of acute coronary syndromes[J]. J. Am. Coll. Cardiol. 71(22):2511–2522, 2018.

    Article  Google Scholar 

  14. Suzuki, K., Overview of deep learning in medical imaging[J]. Radiol. Phys. Technol. 10(3):257–273, 2017.

    Article  Google Scholar 

  15. Mahabadi, A. A., and Rassaf, T., Imaging of coronary inflammation for cardiovascular risk prediction[J]. Lancet 392(10151):894–896, 2018.

    Article  Google Scholar 

  16. Sun, J., Cerebral micro-bleeding identification based on nine-layer convolutional neural network with stochastic pooling, Concurrency and Computation: Practice and Experience, 2019. doi: https://doi.org/10.1002/cpe.5130.

  17. LeCun, Y., Bengio, Y., and Hinton, G., Deep learning[J]. nature 521(7553):436, 2015.

    Article  CAS  Google Scholar 

  18. Erhan, D., Bengio, Y., Courville, A. et al., Why does unsupervised pre-training help deep learning?[J]. J. Mach. Learn. Res. 11(Feb):625–660, 2010.

    Google Scholar 

  19. Liu, W., Anguelov, D., Erhan, D., et al. Ssd: Single shot multibox detector[C]//European conference on computer vision. Springer, Cham: 21–37, 2016.

    Chapter  Google Scholar 

  20. Han, S., Mao, H., and Dally, W. J., Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding[J]. arXiv preprint arXiv:1510.00149, 2015.

  21. Yang, B., Yan, J., Lei, Z., et al., Aggregate channel features for multi-view face detection[C]//Biometrics (IJCB), 2014 IEEE International Joint Conference on. IEEE, 1–8, 2014.

  22. He, K., Gkioxari, G., Dollár, P., et al., Mask r-cnn[C]//Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2980–2988, 2017.

  23. Szegedy, C., Ioffe, S., Vanhoucke, V., et al., Inception-v4, inception-resnet and the impact of residual connections on learning[C]//AAAI, 4:12, 2017.

  24. Targ, S., Almeida, D., and Lyman, K., Resnet in Resnet: generalizing residual architectures[J]. arXiv preprint arXiv:1603.08029, 2016.

  25. Sünderhauf, N., Shirazi, S., Dayoub, F., et al., On the performance of convnet features for place recognition[C]//Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on. IEEE, 4297–4304, 2015.

  26. Redmon, J., Divvala, S., Girshick, R., et al., You only look once: Unified, real-time object detection[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 779–788, 2016.

  27. Ren, S., He, K., Girshick, R., et al., Faster r-cnn: Towards real-time object detection with region proposal networks[C]//Advances in neural information processing systems. 91–99, 2015.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Datong.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Image & Signal Processing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datong, C., Minghui, L., Cheng, J. et al. Coronary Calcium Detection Based on Improved Deep Residual Network in Mimics. J Med Syst 43, 119 (2019). https://doi.org/10.1007/s10916-019-1218-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1218-4

Keywords

Navigation