Skip to main content

Advertisement

Log in

Towards Robot-Assisted Echocardiographic Monitoring in Catheterization Laboratories

Usability-Centered Manipulator for Transesophageal Echocardiography

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

An Erratum to this article was published on 15 September 2017

This article has been updated

Abstract

This paper proposes a robotic Transesophageal Echocardiography (TOE) system concept for Catheterization Laboratories. Cardiovascular disease causes one third of all global mortality. TOE is utilized to assess cardiovascular structures and monitor cardiac function during diagnostic procedures and catheter-based structural interventions. However, the operation of TOE underlies various conditions that may cause a negative impact on performance, the health of the cardiac sonographer and patient safety. These factors have been conflated and evince the potential of robot-assisted TOE. Hence, a careful integration of clinical experience and Systems Engineering methods was used to develop a concept and physical model for TOE manipulation. The motion of different actuators of the fabricated motorized system has been tested. It is concluded that the developed medical system, counteracting conflated disadvantages, represents a progressive approach for cardiac healthcare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figure 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

  • 15 September 2017

    An erratum to this article has been published.

References

  1. Bozzini P, Lichtleiter, eine Erfindung zur Anschauung innerer Theile und Krankheiten nebst der Abbildung, 1806.

  2. Feigenbaum, H., Evolution of echocardiography. Circulation. 93(7):1321–1327, 1996.

    Article  CAS  PubMed  Google Scholar 

  3. Hertz CH, Edler I, Use of ultrasonic reflectoscope for continuous recording of movements of heart walls, Kung Fysiograph Sallsk. Lund., Fordhandl, 24, 40, 1954.

  4. Sato M, U.S. Patent No. 3,557,780. Washington, DC: U.S. Patent and Trademark Office, 1971.

  5. Takahashi N, U.S. Patent No. 3,788,304. Washington, DC: U.S. Patent and Trademark Office, 1974.

  6. Side CD, Gosling RG, Non-surgical assessment of cardiac function, 1971.

  7. Dekker, D.L., Piziali, R.L., and Dong Jr., E., A system for ultrasonically imaging the human heart in three dimensions. Comput. Biomed. Res. 7:544–553, 1974.

    Article  CAS  PubMed  Google Scholar 

  8. Frazin, L., Talano, J.V., Stephanides, L., Loeb, H.S., Kopel, L., and Gunnar, R.M., Esophageal echocar-diography. Circulation. 54(1):102–108, 1976.

    Article  CAS  PubMed  Google Scholar 

  9. Hisanaga, K., Hisanaga, A., Nagata, K., and Yoshida, S., A new transesophageal real-time two- dimensional echocardiographic system using a flexible tube and its clinical application. Proc. Jpn. Soc. Ultrason. Med. 32:43–44, 1977.

    Google Scholar 

  10. Matsumoto, M., Oka, Y., Strom, J., Frishman, W., Kadish, A., Becker, R.M., and Sonnenblick, E.H., Application of transesophageal echocardiography to continuous intraoperative monitoring of left ventricular performance. Am. J. Cardiol. 46(1):95–105, 1980.

    Article  CAS  PubMed  Google Scholar 

  11. Agarwal, S., Parashar, A., Ellis, S.G., Heupler, F.A., Lau, E., Tuzcu, E.M., and Kapadia, S.R., Measures to reduce radiation in a modern cardiac catheterization laboratory. Circ: Cardiovasc. Interve. 7(4):447–455, 2014.

    Google Scholar 

  12. Mylotte, D., Osnabrugge, R.L., Windecker, S., Lefvre, T., de Jaegere, P., Jeger, R., Wenaweser, P., Maisano, F., Moat, N., Sondergaard, L., and Bosmans, J., Transcatheter aortic valve replacement in Europe: Adoption trends and factors influencing device utilization. J. Am. Coll. Cardiol. 62(3):210–219, 2013.

    Article  PubMed  Google Scholar 

  13. Rodwin, B.A., Spruill, T.M., and Ladapo, J.A., Economics of psychosocial factors in patients with cardiovascular disease. Prog. Cardiovasc. Dis.. 55(6):563–573, 2013.

    Article  PubMed  Google Scholar 

  14. Ehler, D., Carney, D.K., Dempsey, A.L., Rigling, R., Kraft, C., Witt, S.A., and Waggoner, A., Guide- lines for cardiac sonographer education: Recommendations of the American Society of Echocardiography sonographer training and education committee. J. Am. Soc. Echocardiogr. 14(1):77–84, 2000.

    Article  Google Scholar 

  15. Hahn, R.T., Abraham, T., Adams, M.S., Bruce, C.J., Glas, K.E., Lang, R.M., and Picard, M.H., Guide-lines for performing a comprehensive transesophageal echocardiographic examination: rec- ommendations from the American Society of Echocardiography and the Society of Car- diovascular Anesthesiologists. J. Am. Soc. Echocardiogr. 26(9):921–964, 2013.

    Article  PubMed  Google Scholar 

  16. Shanewise, J.S., Cheung, A.T., Aronson, S., Stewart, W.J., Weiss, R.L., Mark, J.B., and Cahalan, M.K., ASE SCA guidelines for performing a comprehensive intraoperative multiplane trans- esophageal echocardiography examination: Recommendations of the American Society of Echocardiography Council for intraoperative echocardiography and the Society of Cardio- vascular anesthesiologists task force for certification in perioperative transesophageal echocardiography. Anesth Analg. 89(4):870, 1999.

    Article  CAS  PubMed  Google Scholar 

  17. Seward JB, Khandheria BK, Oh JK, Abel MD, Hughes RW, Edwards WD, Tajik AJ, Transesophageal echocardiography: technique, anatomic correlations, implementation, and clinical applications, In Mayo Clinic Proceedings, Vol. 63, No. 7, pp. 649–680, Elsevier, 1988.

  18. Bhatia, R.S., Carne, D.M., Picard, M.H., and Weiner, R.B., Comparison of the 2007 and 2011 appropriate use criteria for transesophageal echocardiography. J. Am. Soc. Echocardiogr. 25(11):1170–1175, 2012.

    Article  PubMed  Google Scholar 

  19. Vano E, Gonzalez L, Fernandez JM, Alfonso F, Macaya C, Occupational radiation doses in interventional cardiology: A 15-year follow-up, Br. J. Radiol, 2014.

  20. Bor, D., Olgar, T., Onal, E., Caglan, A., and Toklu, T., Assessment of radiation doses to cardiol- ogists during interventional examinations. Med. Phys. 36(8):3730–3736, 2009.

    Article  CAS  PubMed  Google Scholar 

  21. Gilligan, P., Lynch, J.A., and Maguire, S., Assessment of clinical occupational dose reduction effect of a new interventional cardiology shield for radial access combined with a custom scatter reducing drape. Physica Medica: European Journal of Medical Physics. 30(6):718, 2014.

    Article  Google Scholar 

  22. Alazzoni, A., Al Khdair, D., Casanova, A., Meeks, B., Rokoss, M., Schwalm, J.D., and Jolly, S., TCT-145 RADIATION PROTECT: A randomized trial to assess the effectiveness of a novel pelvic lead shield and a novel, non-lead surgical cap to reduce cardiac sonographer radiation exposure during coronary angiography or intervention. J. Am. Coll. Cardiol. 64(11S), 2014.

  23. Morrish OWE, Goldstone KE, An investigation into patient and staff doses from X-ray angiography during coronary interventional procedures, Br. J. Radio., 2014.

  24. Betsou, S., Efstathopoulos, E.P., Katritsis, D., Faulkner, K., and Panayiotakis, G., Patient radi- ation doses during cardiac catheterization procedures. Br. J. Radiol. 71(846):634–639, 1998.

    Article  CAS  PubMed  Google Scholar 

  25. Huda, W., Radiation dosimetry in diagnostic radiology. AJR, Am. J. Roentgenol. 169(6):1487–1488, 1997.

    Article  CAS  Google Scholar 

  26. Efstathopoulos, E. P., Pantos, I., Andreou, M., Gkatzis, A., Carinou, E., Koukorava, C., ... Brountzos, E., Occupational radiation doses to the extremities and the eyes in interventional radiology and cardiology procedures. Br J. Radiol., 2014.

  27. Chida, K., Saito, H., Otani, H., Kohzuki, M., Takahashi, S., Yamada, S., et al., Relationship between fluoroscopic time, dosearea product, body weight, and maximum radiation skin dose in cardiac interventional procedures. Am. J. Roentgenol. 186(3):774–778, 2006.

    Article  Google Scholar 

  28. Alkhatib, A.A., Jalil, A.A., and Harrison, M.E., ERCP and fluoroscopy time. Am. J. Gastroenterol. 109(3):447, 2014.

    Article  PubMed  Google Scholar 

  29. Efstathopoulos, E.P., Pantos, I., Andreou, M., Gkatzis, A., Carinou, E., Koukorava, C., et al., Occupational radiation doses to the extremities and the eyes in interventional radiology and cardiology procedures. B.r J. Radiol. 2014, 2014.

  30. Maron, B.J., McKenna, W.J., Danielson, G.K., Kappenberger, L.J., Kuhn, H.J., Seidman, C.E., and Torbicki, A., American College of Cardiology/European Society of Cardiology Clinical ex- pert consensus document on hypertrophic Cardiomyopathya report of the American College of Cardiology Foundation task force on clinical expert consensus documents and the European Society of Cardiology Committee for practice guidelines. J. Am. Coll. Cardiol. 42(9):2003, 1687-1713.

    Google Scholar 

  31. Vanderpool, H.E., Friis, E.A., Smith, B.S., and Harms, K.L., Prevalence of carpal tunnel syndrome and other work-related musculoskeletal problems in cardiac sonographers. J. Occup. Environ. Med. 35(6):604–610, 1993.

    Article  CAS  Google Scholar 

  32. Mazzola M, Forzoni L, D’Onofrio S, Andreoni G, Use of digital human model for ultrasound system design: A case study to minimize the risks of musculoskeletal disorders, International Journal of Industrial Ergonomics, 2016.

  33. Vanderpool, H.E., Friis, E.A., Smith, B.S., and Harms, K.L., Industry standards for the prevention of work-related musculoskeletal disorders in sonography. J. Diagn. Med. Sonography. 19(5):283–286, 2003.

    Article  Google Scholar 

  34. Jakes, C., Sonographers and occupational overuse syndrome cause, effect, and Solu- tions. J. Diagn. Med. Sonography. 17(6):312–320, 2001.

    Article  Google Scholar 

  35. Magnavita, N., Bevilacqua, L., Mirk, P., Fileni, A., and Castellino, N., Work-related musculoskeletal complaints in sonologists. J. Occup. Environ. Med. 41(11):981–988, 1999.

    Article  CAS  PubMed  Google Scholar 

  36. Tewari, P., Raju, P.S.N., and Neema, P.K., Toe thumb: A musculoskeletal disorder related to transesophageal echocardiography. Ann. Card. Anaesth. 17(4):299, 2014.

    Article  PubMed  Google Scholar 

  37. Mirk, P., Magnavita, N., Masini, L., Bazzocchi, M., and Fileni, A., Frequency of musculoskeletal symptoms in diagnostic medical sonographers, results of a pilot survey. La. Radiologia. Medica. 98(4):236–241, 1999.

  38. Cahalan, M.K., Stewart, W., Pearlman, A., Goldman, M., Sears-Rogan, P., Abel, M., et al., American Society of Echocardiography and Society of Cardiovascu- lar anesthesiologists task force guidelines for training in perioperative echocardiography. J. Am. Soc. Echocardiogr. 15(6):647–652, 2002.

    Article  PubMed  Google Scholar 

  39. Seki, M., Machida, N., Yamagishi, Y., Yoshida, H., and Tomono, K., Nosocomial outbreak of multidrug-resistant Pseudomonas Aeruginosa caused by damaged transesophageal echocar- diogram probe used in cardiovascular surgical operations. J. Infec. Chemother. 19(4):677–681, 2013.

    Article  Google Scholar 

  40. Russotto, V., Cortegiani, A., Raineri, S.M., and Giarratano, A., Bacterial contamination of inan-imate surfaces and equipment in the intensive care unit. J. Intensive. Care. 3(1):54, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gomes, P., Surgical robotics: Reviewing the past, analysing the present, imag- ining the future. Robot. Comput. Integr. Manuf. 27(2):261–266, 2011.

    Article  Google Scholar 

  42. Alterovitz, R., Goldberg, K., & Okamura, A. ,Planning for steerable bevel-tip needle insertion through 2D soft tissue with obstacles. In Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 I.E. international conference on (pp. 1640–1645). IEEE, 2005.

  43. Pahl, C., Zare, M., Nilashi, M., de Faria Borges, M.A., Weingaertner, D., Detschew, V., et al., Role of OpenEHR as an open source solution for the regional modelling of patient data in obstetrics. J. Biomed. Inform.. 55:174–187, 2015.

    Article  PubMed  Google Scholar 

  44. Franko, O.I., and Tirrell, T.F., Smartphone app use among medical providers in ACGME training programs. J. Med. Syst. 36(5):3135–3139, 2012.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Pahl.

Ethics declarations

Funding

Research reported in this publication was supported by Universiti Teknologi Malaysia (UTM) under VOT Nr. 03G12. The content is solely the responsibility of the authors and does not necessarily represent the official views of UTM.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

The original version of this article was revised: The family name of Mostafa Sayahkarajy was corrected.

This article is part of the Topical Collection on Systems-Level Quality Improvement

An erratum to this article is available at https://doi.org/10.1007/s10916-017-0818-0.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pahl, C., Ebelt, H., Sayahkarajy, M. et al. Towards Robot-Assisted Echocardiographic Monitoring in Catheterization Laboratories. J Med Syst 41, 148 (2017). https://doi.org/10.1007/s10916-017-0786-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-017-0786-4

Keywords

Navigation