Skip to main content
Log in

A De-Identification Pipeline for Ultrasound Medical Images in DICOM Format

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Clinical data sharing between healthcare institutions, and between practitioners is often hindered by privacy protection requirements. This problem is critical in collaborative scenarios where data sharing is fundamental for establishing a workflow among parties. The anonymization of patient information burned in DICOM images requires elaborate processes somewhat more complex than simple de-identification of textual information. Usually, before sharing, there is a need for manual removal of specific areas containing sensitive information in the images. In this paper, we present a pipeline for ultrasound medical image de-identification, provided as a free anonymization REST service for medical image applications, and a Software-as-a-Service to streamline automatic de-identification of medical images, which is freely available for end-users. The proposed approach applies image processing functions and machine-learning models to bring about an automatic system to anonymize medical images. To perform character recognition, we evaluated several machine-learning models, being Convolutional Neural Networks (CNN) selected as the best approach. For accessing the system quality, 500 processed images were manually inspected showing an anonymization rate of 89.2%. The tool can be accessed at https://bioinformatics.ua.pt/dicom/anonymizer and it is available with the most recent version of Google Chrome, Mozilla Firefox and Safari. A Docker image containing the proposed service is also publicly available for the community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Suinesiaputra, A., Medrano-Gracia, P., Cowan, B.R., and Young, A.A., Big heart data: Advancing health Informatics through data sharing in cardiovascular imaging. IEEE J. Biomed. Heal. Informatics. 19(4):1283–1290, 2015.

    Article  Google Scholar 

  2. Somolinos, R., Munoz, A., Hernando, M.E., Pascual, M., Caceres, J., Sanchez-de-Madariaga, R., Fragua, J.A., Serrano, P., and Salvador, C.H., Service for the Pseudonymization of electronic healthcare records based on ISO/EN 13606 for the secondary use of information. IEEE J. Biomed. Heal. Informatics. 19(6):2015, 1937–1944.

    Google Scholar 

  3. Aryanto, K.Y.E., van Kernebeek, G., Berendsen, B., Oudkerk, M., and van Ooijen, P.M.A. Image De-Identification Methods for Clinical Research in the XDS Environment. J. Med. Syst. 40(4):83, 2016.

    CAS  PubMed  Google Scholar 

  4. Clunie, D., How to use DoseUtilityTM. PixelMed Publishing. Available: http://www.dclunie.com/pixelmed/software/webstart/DoseUtilityUsage.html. Accessed 26 Jul 2016.

  5. Wu, M., Zhao, T., and Wu, C., Public health data collection and sharing using HIPAA messages. J. Med. Syst. 29(4):303–316, 2005.

    Article  PubMed  Google Scholar 

  6. Mantos, P.L.K., and Maglogiannis, I., Sensitive Patient Data Hiding using a ROI Reversible Steganography Scheme for DICOM Images. J. Med. Syst. 40(6):156, 2016.

    Article  PubMed  Google Scholar 

  7. Freymann, J.B., Kirby, J.S., Perry, J.H., Clunie, D.A., and Jaffe, C.C., Image data sharing for biomedical research--meeting HIPAA requirements for de-identification. J. Digit. Imaging. 25(1):14–24, 2012.

    Article  PubMed  Google Scholar 

  8. Chaudhry, B., Wang, J., Wu, S., Maglione, M., Mojica, W., Roth, E., Morton, S.C., and Shekelle, P.G., Systematic Review: Impact of Health Information Technology on Quality, Efficiency, and Costs of Medical Care. Ann. Intern. Med. 144(10):742, 2006.

    Article  PubMed  Google Scholar 

  9. Huang, H. K., PACS and imaging informations: Basic principles and applications. Wiley-Blackwell, 2004.

  10. Pianykh, O.S., Digital imaging and Communications in Medicine (DICOM). Springer Berlin Heidelberg, Berlin, 2012.

    Book  Google Scholar 

  11. Newhauser, W., Jones, T., Swerdloff, S., Newhauser, W., Cilia, M., Carver, R., Halloran, A., and Zhang, R., Anonymization of DICOM electronic medical records for radiation therapy. Comput. Biol. Med. 53:134–140, 2014.

    Article  PubMed  Google Scholar 

  12. Shahbaz, S., Mahmood, A., and Anwar, Z., SOAD: Securing oncology EMR by anonymizing DICOM images. In: Proceedings -11th International Conference on Frontiers of Information Technology, FIT 2013, 2013, pp. 125–130.

  13. Shamshuddin, S., and Matthews, H.R., Use of OsiriX in developing a digital radiology teaching library. Clinical Radiology. 69(10):e373–e380, 2014.

    Article  CAS  PubMed  Google Scholar 

  14. Rodríguez González, D., Carpenter, T., van Hemert, J.I., and Wardlaw, J., An open source toolkit for medical imaging de-identification. Eur. Radiol. 20(8):2010, 1896–1904.

    Google Scholar 

  15. Huang, L.-C., Chu, H.-C., Lien, C.-Y., Hsiao, C.-H., and Kao, T., Privacy preservation and information security protection for patients’ portable electronic health records. Comput. Biol. Med. 39(9):743–750, Sep. 2009.

    Article  PubMed  Google Scholar 

  16. Li, L. and Wang, J. Z., DDIT - A Tool for DICOM Brain Images De-Identification. In: 2011 5th International Conference on Bioinformatics and Biomedical Engineering, 2011, pp. 1–4.

  17. Ye, Q., and Doermann, D., Text detection and recognition in imagery: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 37(7):1480–1500, 2015.

    Article  PubMed  Google Scholar 

  18. Chen, D., Odobez, J.M., and Bourlard, H., Text detection and recognition in images and video frames. Pattern Recognit. 37(3):595–608, 2004.

    Article  Google Scholar 

  19. Florea, F., Rogozan, A., and Bensrhair, A., Modality categorization by textual annotations interpretation in medical imaging. Med. Informatics Eur. (MIE 2005) :1270–1275, 2005.

  20. Chambolle, A., An algorithm for Total variation minimization and applications. Journal of Mathematical Imaging and Vision. 20(1–2):89–97, 2004.

    Google Scholar 

  21. Bradski, G. and Kaehler, A., Learning OpenCV: Computer Vision with the OpenCV Library. Vol 1. 2008.

  22. van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E., and Yu, T., Scikit-image: Image processing in Python. Peer J. 2:e453, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Community, O., The OpenCV reference manual. October. 1–1104, 2010.

  24. Tessler, F.N., Protected health information on ultrasound images: Time to end the burn. J. Ultrasound Med. 30(10):1319–1320, 2011.

    Article  PubMed  Google Scholar 

  25. de Campos, T. E., Babu, B. R., and Varma, M., Character recognition in natural images. Proc. Int. Conf. Comput. Vis. Theory Appl. 2009.

  26. Breiman, L., Random forests. Mach. Learn. 45(1):5–32, 2001.

    Article  Google Scholar 

  27. T. Tieleman, Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient. Proc. 25th Int. Conf. Mach. Learn. 307: 7, 2008.

  28. Larochelle, H., Mandel, M., Pascanu, R., and Bengio, Y., Learning algorithms for the classification Restricted Boltzmann machine. J. Mach. Learn. Res. 13:643–669, 2012.

    Google Scholar 

  29. Yu, H.-F., Huang, F.-L., and Lin, C.-J., Dual coordinate descent methods for logistic regression and maximum entropy models. Mach. Learn. 85(1–2):41–75, 2011.

    Article  Google Scholar 

  30. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, É., Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12:2825–2830, 2012.

    Google Scholar 

  31. Krizhevsky A., Sutskever I., and Hinton, G. E., ImageNet Classification with Deep Convolutional Neural Networks. In Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.

  32. Gardner, M., and Dorling, S., Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmos. Environ. 32(14):2627–2636, 1998.

    Article  CAS  Google Scholar 

  33. Bengio, Y., Learning deep architectures for AI. Found. Trends®. Mach. Learn. 2(1):1–127, 2009.

    Article  Google Scholar 

  34. Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pascanu, R., Delalleau, O., Desjardins, G., Warde-Farley, D., Goodfellow, I., Bergeron, A., and Bengio, Y., Theano: Deep learning on GPUs with Python. J. Mach. Learn. Res. 1:1–48, 2011.

    Google Scholar 

  35. Levenshtein, V.I., Binary codes capable of correcting deletions. Insertions and Reversals. Sov. Phys. Dokl. 10:707, 1966.

    Google Scholar 

  36. BMD software, PACScenter. Available: https://demo.bmd-software.com/viewer. Accessed 26 Jul 2016.

  37. Melicio Monteiro, E. J., Costa, C., and Oliveira, J. L., A DICOM viewer based on web technology. In: 2013 I.E. 15th International Conference on e-Health Networking, Applications and Services (Healthcom 2013), 2013, pp. 167–171.

  38. Costa, C., Ferreira, C., Bastiao, L., Ribeiro, L., Silva, A., and Oliveira, J.L., Dicoogle-an open source peer-to-peer PACS. J. Digit. Imaging. 24(5):848–856, 2011.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eriksson Monteiro.

Ethics declarations

Funding

This work was supported by project Cloud Thinking (CENTRO-07-ST24-FEDER-002031), co-funded by QREN, “Mais Centro” program, and the EU/EFPIA Innovative Medicines Initiative Joint Undertaking (EMIF grant n° 115,372). Eriksson Monteiro is funded by Fundação para a Ciência e Tecnologia (FCT) under the grant agreement SFRH/BD/102195/2014.

Conflict of Interest

All authors declare that there are no conflicts of interest in this work.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro, E., Costa, C. & Oliveira, J.L. A De-Identification Pipeline for Ultrasound Medical Images in DICOM Format. J Med Syst 41, 89 (2017). https://doi.org/10.1007/s10916-017-0736-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-017-0736-1

Keywords

Navigation