Skip to main content
Log in

Analysis and Entropy Stability of the Line-Based Discontinuous Galerkin Method

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We develop a discretely entropy-stable line-based discontinuous Galerkin method for hyperbolic conservation laws based on a flux differencing technique. By using standard entropy-stable and entropy-conservative numerical flux functions, this method guarantees that the discrete integral of the entropy is non-increasing. This nonlinear entropy stability property is important for the robustness of the method, in particular when applied to problems with discontinuous solutions or when the mesh is under-resolved. This line-based method is significantly less computationally expensive than a standard DG method. Numerical results are shown demonstrating the effectiveness of the method on a variety of test cases, including Burgers’ equation and the Euler equations, in one, two, and three spatial dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Black, K.: Spectral element approximation of convection-diffusion type problems. Appl. Numer. Math. 33(1–4), 373–379 (2000). https://doi.org/10.1016/s0168-9274(99)00104-x

    Article  MathSciNet  MATH  Google Scholar 

  2. Brachet, M.E., Meiron, D.I., Orszag, S.A., Nickel, B.G., Morf, R.H., Frisch, U.: Small-scale structure of the Taylor–Green vortex. J. Fluid Mech. 130(–1), 411 (1983). https://doi.org/10.1017/s0022112083001159

    Article  MATH  Google Scholar 

  3. Carpenter, M.H., Fisher, T.C., Nielsen, E.J., Frankel, S.H.: Entropy stable spectral collocation schemes for the Navier–Stokes equations: discontinuous interfaces. SIAM J. Sci. Comput. 36(5), B835–B867 (2014). https://doi.org/10.1137/130932193

    Article  MathSciNet  MATH  Google Scholar 

  4. Chan, J.: On discretely entropy conservative and entropy stable discontinuous Galerkin methods. J. Comput. Phys. 362, 346–374 (2018). https://doi.org/10.1016/j.jcp.2018.02.033

    Article  MathSciNet  MATH  Google Scholar 

  5. Chandrashekar, P.: Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier–Stokes equations. Commun. Comput. Phys. 14(05), 1252–1286 (2013). https://doi.org/10.4208/cicp.170712.010313a

    Article  MathSciNet  MATH  Google Scholar 

  6. Chapelier, J.B., Plata, M.D.L.L., Renac, F.: Inviscid and viscous simulations of the Taylor–Green vortex flow using a modal discontinuous Galerkin approach. In: 42nd AIAA Fluid Dynamics Conference and Exhibit. American Institute of Aeronautics and Astronautics (2012). https://doi.org/10.2514/6.2012-3073

  7. Chen, T., Shu, C.W.: Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. J. Comput. Phys. 345, 427–461 (2017). https://doi.org/10.1016/j.jcp.2017.05.025

    Article  MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Shu, C.W.: The Runge–Kutta local projection \(p^1\)-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM Math. Model. Numer. Anal. 25(3), 337–361 (1991). https://doi.org/10.1051/m2an/1991250303371

    Article  MATH  MathSciNet  Google Scholar 

  9. Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001). https://doi.org/10.1023/A:1012873910884

    Article  MathSciNet  MATH  Google Scholar 

  10. Fernandez, P., Nguyen, N.C., Peraire, J.: Entropy-stable hybridized discontinuous Galerkin methods for the compressible Euler and Navier–Stokes equations (2018). ArXiv:1808.05066

  11. Fisher, T.C., Carpenter, M.H.: High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains. J. Comput. Phys. 252, 518–557 (2013). https://doi.org/10.1016/j.jcp.2013.06.014

    Article  MathSciNet  MATH  Google Scholar 

  12. Gassner, G.J.: A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM J. Sci. Comput. 35(3), A1233–A1253 (2013). https://doi.org/10.1137/120890144

    Article  MathSciNet  MATH  Google Scholar 

  13. Gassner, G.J., Winters, A.R., Kopriva, D.A.: Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations. J. Comput. Phys. 327, 39–66 (2016). https://doi.org/10.1016/j.jcp.2016.09.013

    Article  MathSciNet  MATH  Google Scholar 

  14. Harten, A.: On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49(1), 151–164 (1983). https://doi.org/10.1016/0021-9991(83)90118-3

    Article  MathSciNet  MATH  Google Scholar 

  15. Hou, S., Liu, X.D.: Solutions of multi-dimensional hyperbolic systems of conservation laws by square entropy condition satisfying discontinuous Galerkin method. J. Sci. Comput. 31(1–2), 127–151 (2006). https://doi.org/10.1007/s10915-006-9105-9

    Article  MathSciNet  MATH  Google Scholar 

  16. Hughes, T., Franca, L., Mallet, M.: A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier–Stokes equations and the second law of thermodynamics. Comput Methods Appl Mech Eng 54(2), 223–234 (1986). https://doi.org/10.1016/0045-7825(86)90127-1

    Article  MathSciNet  MATH  Google Scholar 

  17. Ismail, F., Roe, P.L.: Affordable, entropy-consistent Euler flux functions II: entropy production at shocks. J. Comput. Phys. 228(15), 5410–5436 (2009). https://doi.org/10.1016/j.jcp.2009.04.021

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang, G., Shu, C.W.: On a cell entropy inequality for discontinuous Galerkin methods. Math. Comput. 62(206), 531 (1994). https://doi.org/10.2307/2153521

    Article  MathSciNet  MATH  Google Scholar 

  19. Kopriva, D.A.: Metric identities and the discontinuous spectral element method on curvilinear meshes. J. Sci. Comput. 26(3), 301–327 (2006). https://doi.org/10.1007/s10915-005-9070-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Kopriva, D.A., Kolias, J.H.: A conservative staggered-grid Chebyshev multidomain method for compressible flows. J. Comput. Phys. 125(1), 244–261 (1996). https://doi.org/10.1006/jcph.1996.0091

    Article  MathSciNet  MATH  Google Scholar 

  21. Moura, R., Mengaldo, G., Peiró, J., Sherwin, S.: On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES/under-resolved DNS of Euler turbulence. J. Comput. Phys. 330, 615–623 (2017). https://doi.org/10.1016/j.jcp.2016.10.056

    Article  MathSciNet  MATH  Google Scholar 

  22. Orszag, S.A.: Spectral methods for problems in complex geometries. J. Comput. Phys. 37(1), 70–92 (1980). https://doi.org/10.1016/0021-9991(80)90005-4

    Article  MathSciNet  MATH  Google Scholar 

  23. Osher, S., Tadmor, E.: On the convergence of difference approximations to scalar conservation laws. Math. Comput. 50(181), 19–19 (1988). https://doi.org/10.1090/s0025-5718-1988-0917817-x

    Article  MathSciNet  MATH  Google Scholar 

  24. Parsani, M., Carpenter, M.H., Fisher, T.C., Nielsen, E.J.: Entropy stable staggered grid discontinuous spectral collocation methods of any order for the compressible Navier–Stokes equations. SIAM J. Sci. Comput. 38(5), A3129–A3162 (2016). https://doi.org/10.1137/15m1043510

    Article  MathSciNet  MATH  Google Scholar 

  25. Pazner, W., Persson, P.O.: High-order DNS and LES simulations using an implicit tensor-product discontinuous Galerkin method. In: 23rd AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2017). https://doi.org/10.2514/6.2017-3948

  26. Pazner, W., Persson, P.O.: Stage-parallel fully implicit Runge–Kutta solvers for discontinuous Galerkin fluid simulations. J. Comput. Phys. 335, 700–717 (2017). https://doi.org/10.1016/j.jcp.2017.01.050

    Article  MathSciNet  MATH  Google Scholar 

  27. Pazner, W., Persson, P.O.: Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods. J. Comput. Phys. 354, 344–369 (2018). https://doi.org/10.1016/j.jcp.2017.10.030

    Article  MathSciNet  MATH  Google Scholar 

  28. Persson, P.O.: High-order Navier–Stokes simulations using a sparse line-based discontinuous Galerkin method. In: 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics (2012). https://doi.org/10.2514/6.2012-456

  29. Persson, P.O.: A sparse and high-order accurate line-based discontinuous Galerkin method for unstructured meshes. J. Comput. Phys. 233, 414–429 (2013). https://doi.org/10.1016/j.jcp.2012.09.008

    Article  MathSciNet  MATH  Google Scholar 

  30. Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (2006). https://doi.org/10.2514/6.2006-112

  31. Ranocha, H.: Comparison of some entropy conservative numerical fluxes for the Euler equations. J. Sci. Comput. 76(1), 216–242 (2017). https://doi.org/10.1007/s10915-017-0618-1

    Article  MathSciNet  MATH  Google Scholar 

  32. Rasetarinera, P., Hussaini, M.: An efficient implicit discontinuous spectral Galerkin method. J. Comput. Phys. 172(2), 718–738 (2001). https://doi.org/10.1006/jcph.2001.6853

    Article  MATH  Google Scholar 

  33. Ray, D., Chandrashekar, P.: Entropy stable schemes for compressible Euler equations. Int. J. Numer. Anal. Model. Ser. B 4(4), 335–352 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Los Alamos Report LA-UR-73-479 (1973)

  35. Shu, C.W., Don, W.S., Gottlieb, D., Schilling, O., Jameson, L.: Numerical convergence study of nearly incompressible, inviscid Taylor–Green vortex flow. J. Sci. Comput. 24(1), 1–27 (2005). https://doi.org/10.1007/s10915-004-5407-y

    Article  MathSciNet  MATH  Google Scholar 

  36. Sørensen, H.H.B.: Auto-tuning of level 1 and level 2 BLAS for GPUs. Concurr. Comput. 25(8), 1183–1198 (2012). https://doi.org/10.1002/cpe.2916

    Article  Google Scholar 

  37. Tadmor, E.: Entropy stable theory for difference approximations of nonlinear conservation laws and related time-dependent problems. In: Iserles, A. (ed.) Acta Numerica, pp. 451–512. Cambridge University Press, Cambridge (2003). https://doi.org/10.1017/cbo9780511550157.007

    Chapter  Google Scholar 

  38. Tadmor, E.: The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49(179), 91–91 (1987). https://doi.org/10.1090/s0025-5718-1987-0890255-3

    Article  MathSciNet  MATH  Google Scholar 

  39. Taylor, G.I., Green, A.E.: Mechanism of the production of small eddies from large ones. Proc. R. Soc. A Math. Phys. Eng. Sci. 158(895), 499–521 (1937). https://doi.org/10.1098/rspa.1937.0036

    Article  MATH  Google Scholar 

  40. Thomas, P.D., Lombard, C.K.: Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17(10), 1030–1037 (1979). https://doi.org/10.2514/3.61273

    Article  MathSciNet  MATH  Google Scholar 

  41. Vos, P.E., Sherwin, S.J., Kirby, R.M.: From \(h\) to \(p\) efficiently: implementing finite and spectral/\(hp\) element methods to achieve optimal performance for low- and high-order discretisations. J. Comput. Phys. 229(13), 5161–5181 (2010). https://doi.org/10.1016/j.jcp.2010.03.031

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, Z., Fidkowski, K., Abgrall, R., Bassi, F., Caraeni, D., Cary, A., Deconinck, H., Hartmann, R., Hillewaert, K., Huynh, H., Kroll, N., May, G., Persson, P.O., van Leer, B., Visbal, M.: High-order CFD methods: current status and perspective. Int. J. Numer. Methods Fluids 72(8), 811–845 (2013). https://doi.org/10.1002/fld.3767

    Article  MathSciNet  Google Scholar 

  43. Winters, A.R., Moura, R.C., Mengaldo, G., Gassner, G.J., Walch, S., Peiro, J., Sherwin, S.J.: A comparative study on polynomial dealiasing and split form discontinuous Galerkin schemes for under-resolved turbulence computations. J. Comput. Phys. 372, 1–21 (2018). https://doi.org/10.1016/j.jcp.2018.06.016

    Article  MathSciNet  MATH  Google Scholar 

  44. Zahr, M.J., Persson, P.O.: Performance tuning of Newton-GMRES methods for discontinuous Galerkin discretizations of the Navier–Stokes equations. In: 21st AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics (2013). https://doi.org/10.2514/6.2013-2685

  45. Zhang, X., Shu, C.W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010). https://doi.org/10.1016/j.jcp.2010.08.016

    Article  MathSciNet  MATH  Google Scholar 

  46. Zingan, V., Guermond, J.L., Morel, J., Popov, B.: Implementation of the entropy viscosity method with the discontinuous Galerkin method. Comput. Methods Appl. Mech. Eng. 253, 479–490 (2013). https://doi.org/10.1016/j.cma.2012.08.018

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Aeronautics and Space Administration (NASA) under Grant Number NNX16AP15A, by the Director, Office of Science, Office of Advanced Scientific Computing Research, U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and by the AFOSR Computational Mathematics program under Grant Number FA9550-15-1-0010. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Will Pazner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pazner, W., Persson, PO. Analysis and Entropy Stability of the Line-Based Discontinuous Galerkin Method. J Sci Comput 80, 376–402 (2019). https://doi.org/10.1007/s10915-019-00942-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-00942-1

Keywords

Mathematics Subject Classification

Navigation