Skip to main content

Advertisement

Log in

Brain and Behavior of Dromiciops gliroides

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

We have analyzed the internal structure of the brain of the microbiotherian marsupial Dromiciops gliroides and compared it with the brains of American and Australian marsupials. Dromiciops does not have a fasciculus aberrans, but does exhibit other features of brain structure that are similar to diprotodontid metatherians (e.g., lamination of the lateral geniculate nucleus of the dorsal thalamus). Cortical organization in Dromiciops shows some similarities with that in Australian marsupial carnivores in that the proportional areas of isocortex devoted to somatosensory and visual function are similar in size to each other, and greater in area than that devoted to olfactory or auditory function. This points to similar sensory requirements for the foraging lifestyle of Dromiciops and small Australian marsupial carnivores, with isocortical specialization for somatosensation and vision. We also examined phylogenetic relationships of Dromiciops with extant marsupials based on maximum parsimony analysis using a soft body brain morphology-only matrix, representing 93 extant marsupial taxa. The results recovered Dromiciops as a sister group to the Australasian marsupial clade Diprotodontia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

2Cb:

lobule 2 of cerebellar vermis

2n:

optic nerve

3n:

oculomotor nerve

3V:

third ventricle

4Cb:

lobule 4 of cerebellar vermis

4N:

trochlear nucleus

4V:

fourth ventricle

5Cb:

lobule 5 of cerebellar vermis

5n:

trigeminal nerve

5N:

motor trigeminal nucleus

7Cb:

lobule 7 of cerebellar vermis

7n:

facial nerve

8Cb:

lobule 8 of cerebellar vermis

8cn:

cochlear division of vestibulocochlear nerve

9Cb:

lobule 9 of cerebellar vermis

10Cb:

lobule 10 of cerebellar vermis

10 N:

vagal motor nucleus

12 N:

hypoglossal nucleus

α:

α sulcus

ac:

anterior commissure

aca:

anterior commissure, anterior limb

AcbC:

nucleus accumbens core

AcbSh:

nucleus accumbens shell

aci:

anterior commissure, intrabulbar part

ACo:

amygdalocortical area

AD:

anterodorsal thalamic nucleus

AHA:

anterior hypothalamic area

AHi:

amygdalohippocampal area

AID:

agranular insular cortex, dorsal

AIP:

agranular insular cortex, posterior

AIV:

agranular insular cortex, ventral

AM:

anteromedial thalamic nucleus

Ant:

anterior lobe of cerebellum

AOB:

accessory olfactory bulb

AOD:

anterior olfactory nucleus, dorsal part

AOE:

anterior olfactory nucleus, external part

AOL:

anterior olfactory nucleus, lateral part

AOV:

anterior olfactory nucleus, ventral part

AP:

area postrema

APT:

anterior pretectal nucleus

APTD:

anterior pretectal nucleus, dorsal part

APTV:

anterior pretectal nucleus, ventral part

Aq:

cerebral aqueduct

Arc:

arcuate nucleus

ArcLP:

arcuate hypothalamic nucleus, lateral posterior part

ArcMP:

arcuate hypothalamic nucleus, medial posterior part

ASt:

amygdalostriatal area

Au:

auditory cortex

AV:

anteroventral thalamic nucleus

bic:

brachium of inferior colliculus

BIC:

nucleus of brachium of inferior colliculus

BLA:

basolateral nucleus of amygdala, anterior part

BMA:

basomedial nucleus of amygdala, anterior part

BMP:

basomedial nucleus of amygdala, posterior part

bsc:

brachium of superior colliculus

CA:

cornu Ammonis

CA1:

cornu Ammonis, zone 1

CA2:

cornu Ammonis, zone 2

CA3:

cornu Ammonis, zone 3

Cb:

cerebellum

Cd:

caudate nucleus

Ce:

central nucleus of amygdala

cef:

cervical flexure

Cg:

cingulate gyrus

Cg1:

cingulate area 1

Cg2:

cingulate area 2

CIC:

central nucleus of inferior colliculus

Cl:

claustrum

CL:

central lateral thalamic nucleus

CM:

central medial thalamic nucleus

CnF:

cuneiform nucleus

Com:

commissural nucleus of inferior colliculus

cp:

cerebral peduncle

Cu:

cuneate nucleus

Cx:

cortex (region unspecified)

CxA:

cortex amygdala

DA:

dorsal hypothalamic area

das:

dorsal acoustic stria

dc:

dorsal columns

DC:

dorsal cochlear nucleus

DCDp:

dorsal cochlear nucleus, deep layer

DCFu:

dorsal cochlear nucleus, fusiform layer

DCGr:

dorsal cochlear nucleus, granular layer

DCIC:

dorsal cortex of inferior colliculus

DCMo:

dorsal cochlear nucleus, molecular layer

DEn:

dorsal endopiriform cortex

DG:

dentate gyrus of hippocampal formation

DLGa:

dorsal lateral geniculate thalamic nucleus, alpha segment

DLGb:

dorsal lateral geniculate thalamic nucleus, beta segment

DLL:

dorsal nucleus of lateral lemniscus

dlo:

dorsolateral olfactory tract

DMTg:

dorsomedial tegmental nucleus

DpG:

deep gray layer of superior colliculus

DR:

dorsal raphe nucleus

DRL:

dorsal raphe nucleus, lateral part

DS:

dorsal subiculum

DT:

dorsal terminal nucleus

EAC:

extended amygdala, caudal part

ec:

external capsule

ECIC:

external cortex of inferior colliculus

Ect:

ectorhinal cortex

ECu:

external cuneate nucleus

eml:

external medullary lamina

Ent:

entorhinal cortex

EP:

entopeduncular nucleus

EPl:

external plexiform layer, main olfactory bulb

f:

fornix

fi:

fimbria of hippocampal formation

Fl:

flocculus of cerebellum

fr:

fasciculus retroflexus

FrA:

frontal association cortex

GCCM:

granule cell cluster magna

GI:

glomerular layer of main olfactory bulb

GP:

globus pallidus

Gr:

nucleus gracilis

GrO:

granule cell layer of main olfactory bulb

HDB:

nucleus of horizontal limb of diagonal band

Hy:

hypothalamus

ic:

internal capsule

icp:

inferior cerebellar peduncle

IG:

indusium griseum

ILL:

intermediate nucleus of lateral lemniscus

IMD:

intermediodorsal thalamic nucleus

iml:

internal medullary lamina

InG:

intermediate gray layer of superior colliculus

Int:

interposed cerebellar nucleus

IOA:

inferior olive, subnucleus A of ventral accessory nucleus

IOA’:

inferior olive, subnucleus A’ of ventral accessory nucleus

IOB:

inferior olive, subnucleus B of ventral accessory nucleus

IOBe:

inferior olive, beta subnucleus of ventral accessory nucleus

IOC:

inferior olive, subnucleus C of ventral accessory nucleus

IOC’:

inferior olive, subnucleus C′ of ventral accessory nucleus

IOD:

inferior olive, dorsal accessory nucleus

IODl:

inferior olive, dorsal accessory nucleus, lateral part

IODm:

inferior olive, dorsal accessory nucleus, medial part

IOK:

inferior olive, cap of Kooy of ventral accessory nucleus

IOmd:

inferior olive, mediodorsal part of ventral accessory nucleus

IOPr(dl):

inferior olive, principal nucleus, dorsal lamina

IOPr(vl):

inferior olive, principal nucleus, ventral lamina

IP:

interpeduncular nucleus

IPAC:

interstitial nucleus of posterior limb of anterior commissure

IPl:

internal plexiform layer of the olfactory bulb

isRt:

isthmic reticular formation

LA:

lateral anterior hypothalamic nucleus

LACbSh:

lateral accumbens shell

Lat:

lateral deep cerebellar nucleus

LD:

laterodorsal thalamic nucleus

LEnt:

lateral entorhinal cortex

LHb:

lateral habenular nucleus

ll:

lateral lemniscus

LM:

lateral mammillary nucleus

lo:

lateral olfactory tract

LO:

lateral orbital cortex

LP:

lateral posterior thalamic nucleus

LPB:

lateral parabrachial nucleus

LPGi:

lateral paragigantocellular nucleus

LPO:

lateral preoptic nucleus

LRt:

lateral reticular nucleus

LS:

lateral septal nucleus

LSD:

lateral septal nucleus, dorsal part

LSI:

lateral septal nucleus, intermediate part

LSO:

lateral superior olivary nucleus

LSV:

lateral septal nucleus, ventral part

LV:

lateral ventricle

LVe:

lateral vestibular nucleus

LVPO:

lateroventral preoptic nucleus

M:

motor cortex

mcp:

middle cerebellar peduncle

MCPC:

magnocellular nucleus of posterior commissure

MCPO:

magnocellular nucleus of preoptic area

Md:

medulla oblongata

MD:

mediodorsal thalamic nucleus

MDC:

mediodorsal thalamic nucleus, central part

MDL:

mediodorsal thalamic nucleus, lateral part

MDM:

mediodorsal thalamic nucleus, medial part

Med:

medial deep cerebellar nucleus

MEnt:

medial entorhinal cortex

mfb:

medial forebrain bundle

MGD:

medial geniculate nucleus of thalamus, dorsal part

MGM:

medial geniculate nucleus of thalamus, medial part

MGV:

medial geniculate nucleus of thalamus, ventral part

MHb:

medial habenular nucleus

Mi:

mitral cell layer of main olfactory bulb

ml:

medial lemniscus

ML:

medial mammillary nucleus, lateral part

mlf:

medial longitudinal fasciculus

MM:

medial mammillary nucleus, medial part

MnR:

median raphe nucleus

MO:

medial orbital cortex

MOB:

main olfactory bulb

MPA:

medial preoptic area

MPB:

medial parabrachial nucleus

MPT:

medial pretectal nucleus

mRt:

mesencephalic reticular formation

MS:

medial septal nucleus

MSO:

medial superior olive

mt:

mamillothalamic tract

MVe:

medial vestibular nucleus

MVeMC:

medial vestibular nucleus, magnocellular part

MVePC:

medial vestibular nucleus, parvicellular part

MVPO:

medioventral periolivary nucleus

ns:

nigrostriatal tract

OB:

olfactory bulb

och:

optic chiasm

on:

olfactory nerve fibers

ON:

olfactory nerve fibre layer of bulb

opt:

optic tract

p1Rt:

reticular formation of prosomere 1

Pa:

paraventricular nucleus of hypothalamus

PAG:

periaqueductal gray

PaS:

parasubiculum

PBP:

parabrachial pigmented nucleus

pc:

posterior commissure

PC:

paracentral nucleus of thalamus

PCRt:

parvicellular nucleus of reticular formation

PF:

parafascicular nucleus

PFlD:

paraflocculus dorsal

PFlV:

paraflocculus ventral

Pir:

piriform cortex

PLCo:

posterolateral cortical amygdala

PLH:

posterolateral hypothalamus

PMnR:

paramedian raphe nucleus

Pn:

pontine nuclei

PnC:

pontine reticular nucleus, caudal part

PnO:

pontine reticular nucleus, oral part

PnV:

pontine reticular nucleus, ventral part

Po:

posterior thalamic nucleus

PPit:

posterior pituitary

Pr5:

principal sensory trigeminal nucleus

PrCnF:

precuneiform nucleus

PrG:

pregeniculate nucleus of prethalamus

PRh:

perirhinal nucleus

PrL:

prelimbic cortex

PrS:

presubiculum

PT:

paratenial nucleus

Pu:

putamen

PV:

paraventricular thalamic nucleus

PVA:

paraventricular thalamic nucleus, anterior

PVP:

paraventricular thalamic nucleus, posterior

py:

pyramidal tract

Re:

reuniens nucleus of thalamus

rf:

rhinal fissure

RMC:

red nucleus, magnocellular part

RMg:

raphe magnus nucleus

ROb:

raphe obscurus nucleus

RPC:

red nucleus, parvicellular part

RSD:

retrosplenial dysgranular cortex

RSGa:

retrosplenial gyrus, part a

RSGb:

retrosplenial gyrus, part b

Rt:

reticular nucleus

RtSt:

reticulostriatal nucleus

RtTg:

reticulotegmental nucleus

S:

subiculum

S1:

primary somatosensory cortex

S2:

secondary somatosensory cortex

s5:

sensory trigeminal nerve root

SCh:

suprachiasmatic nucleus of hypothalamus

scp:

superior cerebellar peduncle

scpd:

superior cerebellar penduncle decussation

SFi:

septofimbrial nucleus

SHi:

septohippocampal nucleus

SIB:

substantia innominata, B cell groups

Sim:

simplex lobule of cerebellum

sm:

stria medullaris thalami

SNCD:

substantia nigra, compact part, dorsal tier

SNL:

substantia nigra, lateral part

SO:

supraoptic nucleus of hypothalamus

Sol:

nucleus of solitary tract

sp5:

spinal trigeminal tract

Sp5I:

spinal trigeminal nucleus, interpolar part

Sp5O:

spinal trigeminal nucleus, oral part

SpC:

spinal cord

SPO:

superior paraolivary nucleus

SpVe:

spinal vestibular nucleus

st:

stria terminalis

STh:

subthalamic nucleus

STLP:

bed nucleus of stria terminalis, lateral division, posterior part

STLV:

bed nucleus of stria terminalis, lateral division, ventral part

STMD:

bed nucleus of stria terminalis, medial division, dorsal part

SubCD:

subcoeruleus nucleus, dorsal part

SubG:

subgeniculate nucleus of prethalamus

SuG:

superficial gray of superior colliculus

TeA:

temporal association cortex

tfp:

transverse fibers of pons

TS:

triangular septal nucleus

Tu:

olfactory tubercle

tz:

trapezoid body

Tz:

trapezoid nucleus

V1:

primary visual cortex

V2L:

secondary visual area, lateral part

V2M:

secondary visual area, medial part

VA:

ventral anterior thalamic nucleus

VC:

ventral cochlear nucleus

VEn:

ventral endopiriform nucleus

vhc:

ventral hippocampal commissure

VL:

ventral lateral thalamic nucleus

VLH:

ventral lateral hypothalamic nucleus

VLL:

ventral nucleus of lateral lemniscus

VM:

ventromedial thalamic nucleus

VMH:

ventromedial hypothalamic nucleus

VMPO:

ventromedial preoptic nucleus

VO:

ventral orbital cortex

VP:

ventral pallidum

VPL:

ventral posterolateral thalamic nucleus

VPM:

ventral posteromedial thalamic nucleus

VPPC:

ventral posterior nucleus of thalamus, parvicellular part

VRe:

ventral reuniens nucleus

VS:

ventral subiculum

vsc:

venstral spinocerebellar tract

VTA:

ventral tegmental area

VTAR:

ventral tegmental area, rostral part

VTg:

ventral tegmental nucleus

ZI:

zona incerta

Zo:

stratum zonale of superior colliculus

References

  • Abbie AA (1937) Some observations on the major subdivisions of the Marsupialia: with especial reference to the position of the Peramelidae and Caenolestidae. J Anat 71:429-436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alpin KR, Archer M (1987) Recent advances in marsupial systematics, with a new syncretic classification. In: Archer M (ed) Possums and Opossums: Studies in Evolution, Vol. 1. Royal Zoological Society of New South Wales, Sydney, pp 15-72

    Google Scholar 

  • Ameghino F (1889) Contribucion al conocimiento de los mamiferos fosiles de la República Argentina: Obra escrita bajo los auspicios de la Academia nacional de ciencias de la República Argentina para ser presentada á la Exposicion universal de Paris de 1889 (Vol. 6). PE Coni é hijos

  • Amico G, Aizen MA (2000) Ecology: mistletoe seed dispersal by a marsupial. Nature 408:929-930

    CAS  PubMed  Google Scholar 

  • Amico GC, Rodríguez-Cabal MA, Aizen MA (2009) The potential key seed-dispersing role of the arboreal marsupial Dromiciops gliroides. Acta Oecol 35:8-13

    Google Scholar 

  • Amico GC, Rodriguez-Cabal MA, Aizen MA (2011) Geographic variation in fruit colour is associated with contrasting seed disperser assemblages in a south Andean mistletoe. Ecography 34:318-326

    Google Scholar 

  • Amrine-Madsen H, Koepfli KP, Wayne RK, Springer MS (2003) A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. Mol Phylogenet Evol 28:225-240

    CAS  PubMed  Google Scholar 

  • Armati PJ, Dickman CR, Hume ID (eds) (2006) Marsupials. Cambridge University Press, Cambridge

    Google Scholar 

  • Armesto JJ, Rozzi R (1989) Seed dispersal syndromes in the rain forest of Chiloé: evidence for the importance of biotic dispersal in a temperate rain forest. J Biogeogr 16:219-226

    Google Scholar 

  • Ashwell K (2010) The Neurobiology of Australian Marsupials: Brain Evolution in the Other Mammalian Radiation. Cambridge University Press, Cambridge

    Google Scholar 

  • Ashwell KWS, McAllan BM, Mai JK, Paxinos G (2008) Cortical cyto- and chemoarchitecture in three small Australian marsupial carnivores: Sminthopsis macroura, Antechinus stuartii and Phascogale calura. Brain Behav Evol 72:215-232

    CAS  PubMed  Google Scholar 

  • Beck RMD (2008) A dated phylogeny of marsupials using a molecular supermatrix and multiple fossil constraints. J Mammal 89:175-189

    Google Scholar 

  • Beck RMD (2012) An ‘ameridelphian’ marsupial from the early Eocene of Australia supports a complex model of Southern Hemisphere marsupial biogeography. Naturwissenschaften 99:715-729

    CAS  PubMed  Google Scholar 

  • Berns GS, Ashwell KW (2017) Reconstruction of the cortical maps of the Tasmanian tiger and comparison to the Tasmanian devil. PLoS One 12:e0168993

    PubMed  PubMed Central  Google Scholar 

  • Bozinovic F, Ruiz G, Rosenmann M (2004) Energetics and torpor of a South American “living fossil”, the microbiotheriid Dromiciops gliroides. J Comp Physiol B 174:293-297

    PubMed  Google Scholar 

  • Burkitt AN (1938) The external morphology of the brain of Notoryctes typhlops. Proc Kon Ned Akad Wetensch 41:921-933

    Google Scholar 

  • Celis-Diez JL, Hetz J, Marín-Vial PA, Fuster G, Necochea P, Vásquez RA, Jaksic FM, Armesto JJ (2012) Population abundance, natural history, and habitat use by the arboreal marsupial Dromiciops gliroides in rural Chiloé Island, Chile. J Mammal 93:134-148

    Google Scholar 

  • Condo GJ, Wilson PD (1990) Morphological organization of thalamic cortical relay cells in the dorsal lateral geniculate nucleus of the North American opossum. J Comp Neurol 292:303-319

    CAS  PubMed  Google Scholar 

  • D’Elía G, Hurtado N, D’Anatro A (2016) Alpha taxonomy of Dromiciops (Microbiotheriidae) with the description of 2 new species of monito del monte. J Mammal 97:1136–1152

    Google Scholar 

  • Di Virgilio A, Amico GC, Morales JM (2014) Behavioral traits of the arboreal marsupial Dromiciops gliroides during Tristerix corymbosus fruiting season. J Mammal 95:1189-1198

    Google Scholar 

  • Drummond AJ, Ho SY, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    PubMed  PubMed Central  Google Scholar 

  • Duchêne DA, Bragg JG, Duchêne S, Neaves LE, Potter S, Moritz C, Johnson RN, Ho SYW, Eldridge MDB (2017) Analysis of phylogenomic tree space resolves relationships among marsupial families. Syst Biol 67:400-412

    Google Scholar 

  • Dunlop SA, Tee LBG, Beazley LD (2000) Topographic order of retinofugal axons in a marsupial: implications for map formation in visual nuclei. J Comp Neurol 428:33-44

    CAS  PubMed  Google Scholar 

  • Elgueta EI, Valenzuela J, Rau JR (2007) New insights into the prey spectrum of Darwin′s fox (Pseudalopex fulvipes Martin, 1837) on Chiloé Island, Chile. Mammal Biol 72:179-185

    Google Scholar 

  • Elliot Smith G (1902a) The brains of the Mammalia. In: Descriptive and Illustrated Catalogue of the Physiological Series of Comparative Anatomy Contained in the Museum of the Royal College of Surgeons of England 2:138-481

  • Elliott Smith G (1902b) On a peculiarity of the cerebral commissures in certain Marsupialia, not hitherto recognised as a distinctive feature of the Diprotodontia. Proc Roy Soc Lond 70:226-231

  • Fontúrbel FE, Candia AB, Botto-Mahan C (2014) Nocturnal activity patterns of the monito del monte (Dromiciops gliroides) in native and exotic habitats. J Mammal 95:1199-1206

    Google Scholar 

  • Greer JK (1965) Mammals of Malleco Province, Chile. Publ Mus Mich State Univ, Biol Ser 3:49–152

    Google Scholar 

  • Gurovich Y, Bongers A, Ashwell KWS (2018) Magnetic resonance imaging of the brains of three peramelemorphian marsupials. J Mammal Evol 1-22 https://doi.org/10.1007/s10914-018-9429-x

    Google Scholar 

  • Gurovich Y, Stannard HJ, Old JM (2015) The presence of the marsupial Dromiciops gliroides in Parque Nacional Los Alerces, Chubut, southern Argentina, after the synchronous maturation and flowering of native bamboo and subsequent rodent irruption. Rev Chil Hist Nat 88:17

    Google Scholar 

  • Hadj-Moussa H, Moggridge JA, Luu BE, Quintero-Galvis JF, Gaitán-Espitia JD, Nespolo RF, Storey KB (2016) The hibernating South American marsupial, Dromiciops gliroides, displays torpor-sensitive microRNA expression patterns. Sci Rep 6:24627. https://doi.org/10.1038/srep24627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haight JR, Murray PF (1981) The cranial endocast of the early Miocene marsupial, Wynyardia bassiana: an assessment of taxonomic relationships based upon comparisons with recent forms. Brain Behav Evol 19:17–36

    CAS  PubMed  Google Scholar 

  • Haight JR, Nelson JE (1987) A brain that doesn’t fit its skull: a comparative study of the brain and endocranium of the koala, Phascolarctos cinereus (Marsupialia: Phascolarctidae). In: Archer M (ed) Possums and Opossums: Studies in Evolution, Vol 2. Royal Zoological Society of New South Wales, Sydney, pp 331–352

    Google Scholar 

  • Hardman CD, Ashwell KWS (2012) Stereotaxic and Chemoarchitectonic Atlas of the Brain of the Common Marmoset (Callithrix jacchus). CRC press, Boca Raton

    Google Scholar 

  • Hayhow WR (1967) The lateral geniculate nucleus of the marsupial phalanger, Trichosurus vulpecula. An experimental study of cytoarchitecture in relation to the intranuclear optic nerve projection fields. J Comp Neurol 131:571–604

    CAS  PubMed  Google Scholar 

  • Herrick CJ (1921) A monographic study of the American marsupial, Caenolestes. Field Mus Nat Hist Zool Ser 14:157–162 + 22 pls

  • Hershkovitz P (1999) Dromiciops gliroides Thomas, 1894, last of the Microbiotheria (Marsupialia), with a review of the family Microbiotheriidae. Fieldiana Zool 93:1–60

    Google Scholar 

  • Himes CMT, MH Gallardo, Kenagy GJ (2008) Historical biogeography and post-glacial recolonization of South American temperate rain forest by the relictual marsupial Dromiciops gliroides. J Biogeogr 35:1415–1424

    Google Scholar 

  • Horovitz I, Martin T, Bloch J, Ladevèze S, Kurz C, Sánchez-Villagra MR (2009) Cranial anatomy of the earliest marsupials and the origin of opossums. PLoS One 4(12): e8278

    PubMed  PubMed Central  Google Scholar 

  • Horovitz I, Sánchez-Villagra MR (2003) A morphological analysis of marsupial mammal higher-level phylogenetic relationships. Cladistics 19:181-212

    Google Scholar 

  • Jiménez J, Rageot R (1979) Notas sobre la biología del “monito del monte”, Dromiciops australis Philippi 1893. An Mus Hist Nat Valpso 12:83–88

    Google Scholar 

  • Johnson JI, Kirsch JAW, Reep RL, Switzer RC III (1994) Phylogeny through brain traits: more characters for the analysis of mammalian evolution. Brain Behav Evol 43:319–347

    CAS  PubMed  Google Scholar 

  • Johnson JI, Kirsch JAW, Switzer RC III (1982a) Phylogeny through brain traits: fifteen characters which adumbrate mammalian genealogy. Brain Behav Evol 20:72–83

    CAS  PubMed  Google Scholar 

  • Johnson JI, Kirsch JAW, Switzer RC III (1984) Brain traits through phylogeny: evolution of neural characters. Brain Behav Evol 24:169–176

    CAS  PubMed  Google Scholar 

  • Johnson JI, Marsh MP (1969) Laminated lateral geniculate in the nocturnal marsupial Petaurus breviceps (sugar glider). Brain Res 15:250–254

    PubMed  Google Scholar 

  • Johnson JI, Switzer RC III, Kirsch JAW (1982b) Phylogeny through brain traits: the distribution of categorizing characters in contemporary mammals. Brain Behav Evol 20:97–117

    CAS  PubMed  Google Scholar 

  • Kahn DM, Krubitzer L (2002) Retinofugal projections in the short-tailed opossum (Monodelphis domestica). J Comp Neurol 447:114–127

    PubMed  Google Scholar 

  • Karlen SJ, Krubitzer L (2006) Phenotypic diversity is the cornerstone of evolution: variation in cortical field size within short-tailed opossums. J Comp Neurol 499:990–999

    PubMed  Google Scholar 

  • Kirsch JAW, Dickerman AW, Reig OA, Springer MS (1991) DNA hybridization evidence for the Australasian affinity of the American marsupial Dromiciops australis. Proc Natl Acad Sci USA 88:10465-10469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirsch JAW, Johnson JI (1983) Phylogeny through brain traits: trees generated by neural characters. Brain Behav Evol 22:60–69

    CAS  PubMed  Google Scholar 

  • Kirsch JAW, Johnson JI, Switzer RC III (1983) Phylogeny through brain traits: the mammalian family tree. Brain Behav Evol 22:70–74

    CAS  PubMed  Google Scholar 

  • Lippolis G, Westman W, McAllan BM, Rogers LJ (2005) Lateralization of escape responses in the stripe-faced dunnart, Sminthopsis macroura (Dasyuridae: Marsupialia). Laterality 10:457–470

    PubMed  Google Scholar 

  • Loo YT (1931) The forebrain of the opossum, Didelphis virginiana. Part II. Histology. J Comp Neurol 52:1–148

    Google Scholar 

  • Luo Z-X, Ji Q, Wible JR, Yuan C-X (2003) An Early Cretaceous tribosphenic mammal and metatherian evolution. Science 302:1934-1940

    CAS  PubMed  Google Scholar 

  • Macrini TE, Muizon C de, Cifelli RL, Rowe T (2007) Digital cranial endocast of Pucadelphys andinus, a Paleocene metatherian. J Vertebr Paleontol 27:99–107

    Google Scholar 

  • Maddison WP, Maddison DR (2016) Mesquite: a modular system for evolutionary analysis. Version 3.04.2015

  • Mann G (1944) El cerebro de Marmosa elegans. Bol Mus Nac Hist Nat Santiago 22:197–235

    Google Scholar 

  • Mann G (1955) Monito del monte Dromiciops australis. Phillipi Inv Zool Chilenas 2:159–166

    Google Scholar 

  • Mann G (1978) Los pequeños mamíferos de Chile. Gayana Zoología 40:1–342

    Google Scholar 

  • Marshall LG (1978) Dromiciops australis. Mammal Species 99:1–5

    Google Scholar 

  • Martin GM (2008) Sistemática, distribución y adaptaciones de los marsupiales patagónicos. Dissertation, Universidad Nacional de La Plata, La Plata

  • Martin GM (2010) Geographic distribution and historical occurrence of Dromiciops gliroides Thomas (Metatheria, Microbiotheria). J Mammal 91:1025–1035

    Google Scholar 

  • Martin GM (2017) Intraspecific variability and variation in Dromiciops Thomas 1894 (Marsupialia, Microbiotheria, Microbiotheriidae). J Mammal 99:159–173

    Google Scholar 

  • Martinez DR, Jaksic FM (1996) Habitat, relative abundance, and diet of rufous-legged owls (Strix rufipes King) in temperate forest remnants of southern Chile. Ecoscience 3:259–263

    Google Scholar 

  • Meredith RW, Westerman M, Case JA, Springer MS (2008) A phylogeny and timescale for marsupial evolution based on sequences for five nuclear genes. J Mammal Evol 15:1–36

    Google Scholar 

  • Meredith RW, Westerman M, Springer MS (2009) A phylogeny of Diprotodontia (Marsupialia) based on sequences for five nuclear genes. Mol Phylogen Evol 51:554–571

    CAS  Google Scholar 

  • Mitchell KJ, Pratt RC, Watson LN, Gibb GC, Llamas B, Kasper M, Edson J, Hopwood B, Male D, Armstrong KN, Meyer M, Hofreiter M, Austin J, Donnellan SC, Lee MSY, Phillips MJ, Cooper A (2014) Molecular phylogeny, biogeography, and habitat preference evolution of marsupials. Mol Biol Evol 31:2322–2330

    CAS  PubMed  Google Scholar 

  • Nilsson MA, Churakov G, Sommer M, Van Tran N, Zemann A, Brosius J, Schmitz J (2010) Tracking marsupial evolution using archaic genomic retroposon insertions. PLoS Biol 8:e1000436

    PubMed  PubMed Central  Google Scholar 

  • Obenchain JB (1925) The brains of the South American marsupials Caenolestes and Orolestes. Field Mus Nat Hist Publ 224, Zool Ser 14:175–232

  • Osgood WH (1943) The Mammals of Chile. Field Mus Nat Hist Fieldiana Zool 30:1–268

    Google Scholar 

  • Patterson B, Rogers M (2007) Order Microbiotheria Ameghino, 1889. In: Gardner AL (ed) Mammals of South America. Vol. 1. Marsupials, Xenarthrans, Shrews, and Bats. University of Chicago Press, Chicago, pp 117–119

  • Paxinos G, Franklin KBJ (2004) The Mouse Brain in Stereotaxic Co-ordinates. Compact, second edition. Elsevier Academic, San Diego

  • Paxinos G, Huang XF, Toga AW (2000) The Rhesus Monkey Brain in Stereotaxic Co-ordinates. Academic Press, San Diego

    Google Scholar 

  • Paxinos G, Watson CRR (1998) The Rat Brain in Stereotaxic Co-ordinates. Academic Press, San Diego

    Google Scholar 

  • Philippi F (1893) Un nuevo marsupial chileno. Anal Univ Chile 86:31-34

    Google Scholar 

  • Pridmore PA (1994) Locomotion in Dromiciops australis (Marsupialia, Microbiotheriidae). Aust J Zool 42:679–699

    Google Scholar 

  • Rau JR, Martínez DR, Low JR, Tilleria MS (1995) Depredación por zorros chillas (Pseudalopex griseus) sobre micromamíferos cursoriales, escansoriales y arborícolas en un área silvestre protegida del sur de Chile. Rev Chil Hist Nat 68:333–340

    Google Scholar 

  • Riek A, Geiser F (2014) Heterothermy in pouched mammals–a review. J Zool 292:74–85

    Google Scholar 

  • Rodriguez-Cabal MA, Branch LC (2011) Influence of habitat factors on the distribution and abundance of a marsupial seed disperser. J Mammal 92:1245–1252

    Google Scholar 

  • Rowe TB, Eiting TP, Macrini TE, Ketcham RA (2005) Organization of the olfactory and respiratory skeleton in the nose of the gray short-tailed opossum Monodelphis domestica. J Mammal Evol 12:303–336

    Google Scholar 

  • Salazar DA, Fontúrbel FE (2016) Beyond habitat structure: landscape heterogeneity explains the monito del monte (Dromiciops gliroides) occurrence and behavior at habitats dominated by exotic trees. Integr Zool 11:413–421

    PubMed  Google Scholar 

  • Sanderson KJ, Pearson LJ, Haight JR (1979) Retinal projections in the Tasmanian devil, Sarcophilus harrisii. J Comp Neurol 188:335–345

    CAS  PubMed  Google Scholar 

  • Schneider NY, Gurovich Y (2017) Morphology and evolution of the oral shield in marsupial neonates including the newborn monito del monte (Dromiciops gliroides, Marsupialia Microbiotheria) pouch young. J Anat 231:59–83

    PubMed  PubMed Central  Google Scholar 

  • Segall W (1969) The middle ear region of Dromiciops. Acta Anat 72:489–501

    CAS  PubMed  Google Scholar 

  • Suárez-Villota EY, Quercia CA, Nuñez JJ, Gallardo MH, Himes CM, Kenagy GJ (2018) Monotypic status of the South American relictual marsupial Dromiciops gliroides (Microbiotheria). J Mammal 99:803–812

    Google Scholar 

  • Szalay FS (1982) A new appraisal of marsupial phylogeny and classification. In: Archer M (ed) Carnivorous Marsupials. Royal Zoological Society of New South Wales, Sydney, pp 621–640

    Google Scholar 

  • Szalay FS (1994) Evolutionary History of the Marsupials and an Analysis of Osteological Characters. Cambridge University Press, New York

    Google Scholar 

  • Thomas O (1894) On Micoureus griseus, Desm., with the description of a new genus and species of Didelphyidae. Ann Mag Nat Hist 6:184–188

    Google Scholar 

  • Thomas O (1919) On small mammals collected by Sr. E. Budin in northwestern Patagonia. Ann Mag Nat Hist 9:199–212

    Google Scholar 

  • Valladares-Gómez A, Celis-Diez JL, Palma RE, Manríquez GS (2017) Cranial morphological variation of Dromiciops gliroides (Microbiotheria) along its geographical distribution in south-central Chile: a three-dimensional analysis. Z Säugetierk 87:107–117

    Google Scholar 

  • Watson CRR, Herron P (1977) The inferior olivary complex of marsupials. J Comp Neurol 176:527–538

    CAS  PubMed  Google Scholar 

  • Weisbecker V, Ashwell K, Fisher D (2013) An improved body mass dataset for the study of marsupial brain size evolution. Brain Behav Evol 82:81–82

    PubMed  Google Scholar 

  • Ziehen TH (1897) Das Centralnervensystem der Monotremen und Marsupialier. Ein Beitrag zur vergleichenden makroskopischenden Entwickelungsgeschichte des Wirbelthiergehirns. Teil I. Makroskopische Anatomie. Semon Zool Forschungsreis Aust Denkschr Med Nat Ges Jena 6:168–187

    Google Scholar 

Download references

Acknowledgements

We are extremely grateful to Emeritus Professor John Nelson of Monash University and Dr. Leo Joseph of Commonwealth Scientific and Industrial Research Organization (CSIRO), who kindly gave permission to photograph and analyze the sectioned and stained marsupial brains from the Nelson Brain Collection at the Australian National Wildlife Collection in Canberra. The study would also not have been possible without the excellent online resources of neurosciencelibrary.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth W. S. Ashwell.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurovich, Y., Ashwell, K.W.S. Brain and Behavior of Dromiciops gliroides. J Mammal Evol 27, 177–197 (2020). https://doi.org/10.1007/s10914-018-09458-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-018-09458-1

Keywords

Navigation