Skip to main content

Advertisement

Log in

Recent Advances on Variability, Morpho-Functional Adaptations, Dental Terminology, and Evolution of Sloths

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The occasion of the Xenarthra Symposium during the ICVM 9 meeting allowed us to reflect on the considerable advances in the knowledge of sloths made by the “X-community” over the past two decades, particularly in such aspects as locomotion, mastication, diet, dental terminology, intraspecific variation, sexual dimorphism, and phylogenetic relationships. These advancements have largely been made possible by the application of cladistic methodology (including DNA analyses) and the discovery of peculiar forms such as Diabolotherium, Thalassocnus, and Pseudoglyptodon in traditionally neglected areas such as the Chilean Andes and the Peruvian Pacific desert coast. Modern tree sloths exhibit an upside-down posture and suspensory locomotion, but the habits of fossil sloths are considerably more diverse and include locomotory modes such as inferred bipedality, quadrupedality, arboreality or semiarboreality, climbing, and an aquatic or semi-aquatic lifestyle in saltwater. Modern tree sloths are generalist browsers, but fossil sloths had browsing, grazing, or mixed feeding dietary habits. Discovery of two important sloth faunas in Brazil (Jacobina) and southern North America (Daytona Beach and Rancho La Brea) have permitted evaluation of the ontogenetic variation in Eremotherium laurillardi and the existence of possible sexual dimorphism in this sloth and in Paramylodon harlani. A new dental terminology applicable to a majority of clades has been developed, facilitating comparisons among taxa. An analysis wherein functional traits were plotted onto a phylogeny of sloths was used to determine patterns of evolutionary change across the clade. These analyses suggest that megatherioid sloths were primitively semiarboreal or possessed climbing adaptations, a feature retained in some members of the family Megalonychidae. Pedolateral stance in the hindfoot is shown to be convergently acquired in Mylodontidae and Megatheria (Nothrotheriidae + Megatheriidae), this feature serving as a synapomorphy of the latter clade. Digging adaptations can only be securely ascribed to scelidotheriine and mylodontine sloths, and the latter are also the only group of grazing sloths, the remainder being general browsers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antoine P-O, Salas-Gismondi R, Baby P, Benammi M, Brusset S, De Franceschi D, Espurt N, Goillot C, Pujos F, Tejada J, Urbina M (2007) The middle Miocene (Laventan) Fitzcarrald Fauna, Amazonian Peru. In: Díaz-Martínez E, Rábano L (eds) 4th European Meeting on the Palaeontology and Stratigraphy of Latin America, Madrid, pp 19–24

  • Bargo MS (2001a) El aparato masticatorio de los perezosos terrestres (Xenarthra, Tardigrada) del Pleistoceno de la Argentina. Morfometría y biomecánica. Unpublished PhD thesis. Universidad Nacional de La Plata, La Plata, 400 pp

  • Bargo MS (2001b) The ground sloth Megatherium americanum: skull shape, bit forces, and diet. Acta Palaeontol Pol 46:173–192

    Google Scholar 

  • Bargo MS (2003) Biomechanics and paleobiology of the Xenarthra: the state of the art (Mammalia, Xenarthra). In: Fariña RA, Vizcaíno SF, Storch G (eds) Morphological Studies in Fossil and Extant Xenarthra. Senckenb biol 83:41–50

  • Bargo M, De Iuliis G, Vizcaíno SF (2006b) Hypsodonty in Pleistocene ground sloths. Acta Palaeontol Pol 51:53–61

    Google Scholar 

  • Bargo MS, Toledo N, Vizcaíno SF (2006a) Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada). J Morphol 267:248–263

    Article  PubMed  Google Scholar 

  • Bargo MS, Vizcaíno SF (2008) Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana 45:175–196

    Google Scholar 

  • Bargo M, Vizcaíno SF, Kay, RF (2009) Predominance of orthal masticatory movements in the early Miocene Eucholaeops (Mammalia, Xenarthra, Tardigrada, Megalonychidae) and other megatherioid sloths. J Vertebr Paleontol 29:870–880

    Article  Google Scholar 

  • Blanco RE, Szerwonogora A (2003) The gait of Megatherium Cuvier 1796 (Mammalia, Xenarthra, Megatheriidae) In: Fariña RA, Vizcaíno SF, Storch G (eds) Morphological Studies in Fossil and Extant Xenarthra. Senckenb biol 83:61–68

  • Canto J, Salas-Gismondi R, Cozzuol M, Yánez J (2008) The aquatic sloth Thalassocnus (Mammalia, Xenarthra) from the late Miocene of north-central Chile: biogeographic and ecological implications. J Vertebr Paleontol 28:918–922

    Article  Google Scholar 

  • Carlini AA, Brandoni D, Sánchez R (2006b) First megatheriines (Xenarthra, Phyllophaga, Megatheriidae) from the Urumaco (late Miocene) and Codore (Pliocene) formations, Estado Falcón, Venezuela. J Syst Palaeontol 4:269–278

    Article  Google Scholar 

  • Carlini AA, Scillato-Yané GJ, Sánchez R (2006a) New Mylodontoidea (Xenarthra: Phyllophaga) from the middle Miocene-Pliocene of Venezuela. J Syst Palaeontol 4:255–267

    Article  Google Scholar 

  • Cartelle C, Bohórquez GA (1982) Eremotherium laurillardi Lund, 1842. Parte I. Determinação específica e dimorfismo sexual. Iheringia Ser Geol (7):45–63

  • Cartelle C, De Iuliis G (2006) Eremotherium laurillardi (Lund) (Xenarthra, Megatheriidae), the Panamerican giant ground sloth: taxonomic aspects of the ontogeny of skull and dentition. J Syst Palaeontol 4: 199–209

    Article  Google Scholar 

  • Casinos A (1996) Bipedalism and quadrupedalism in Megatherium: an attempt at biomechanical reconstruction. Lethaia 29:87–96

    Article  Google Scholar 

  • Chiarello AG (2008) Sloth ecology. An overview of field studies. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. The University of Florida Press, Gainesville, pp 269–280

    Google Scholar 

  • Christiansen P, Fariña RA (2003) Mass estimation of two fossil ground sloths (Mammalia, Xenarthra, Mylodontidae). In: Fariña RA, Vizcaíno SF, Storch G (eds) Morphological Studies in Fossil and Extant Xenarthra. Senckenb biol 83:95–101

  • Cozzuol MA (2007) The Acre vertebrate fauna: age, diversity, and geography. J So Am Earth Sci 21:185–203

    Article  Google Scholar 

  • Cuvier G (1823) Sur le Megatherium. Recherches sur les ossements fossiles, 2nd édition 1:174–192

  • De Iuliis G (1996) A systematic review of the Megatheriinae (Mammalia: Xenarthra: Megatheriidae). Unpublished PhD thesis. University of Toronto, Toronto, 781 pp

  • De Iuliis G (2010) Use of anatomical features in sloth systematics. Proceedings of the 9th International Congress of Vertebrate Morphology, Punta del Este, Uruguay, July 26–31 2010 (DVD support)

  • De Iuliis G, Cartelle C (1999) A new giant megatheriin ground sloth (Mammalia: Xenarthra: Megatheriidae) from the late Blancan to early Irvingtonian of Florida. Zool J Linn Soc 127:495–515

    Article  Google Scholar 

  • De Iuliis G, Pujos F (2006) On the systematics of Hapalops (Xenarthra: Megatherioidea). J Vertebr Paleontol 23: 55A

    Google Scholar 

  • De Iuliis G, Pujos F, Bargo MS, Toledo N, Vizcaíno SF (2009) Eucholaeops (Xenarthra, Tardigrada) remains from the Santa Cruz Formation (early Miocene), Patagonia, Argentina. Proceedings of the 10th International Mammalogical Congress, Mendoza:342A

  • De Iuliis G, Gaudin TJ, Vicars M (2011) A new genus and species of nothrotheriid sloth (Xenarthra, Tardigrada, Nothrotheriidae) from the late Miocene (Huayquerian) of Peru. Palaeontology 54:171–205

    Article  Google Scholar 

  • Engelmann GF (1987) A new Deseadan sloth (Mammalia: Xenarthra) from Salla, Bolivia, and its implications for the primitive condition of the dentition in Edentates. J Vertebr Paleontol 7:217–223

    Article  Google Scholar 

  • Fajardo RJ, Lague MR (1999) An analysis of the morphological variation in the Santacrucian xenarthran Hapalops: implications for sloth taxonomy. Congreso Internacional Evolución Neotropical del Cenozoico, La Paz:21A

  • Fariña RA, Blanco RE (1996) Megatherium, the stabber. Proc R Soc Lond B 263:1725–1729

    Article  Google Scholar 

  • Fariña RA, Vizcaíno SF, Bargo MS (1998). Body mass estimations in Lujanian (late Pleistocene - early Holocene of South America) mammal megafauna. Mastozool Neotrop 5:87–108

    Google Scholar 

  • Flynn JJ, Swisher CC (1995) Cenozoic South American Land mammal ages: correlation to global geochronologies. In: Berggren WA, Kent DV, Handerbol J (eds) Geochronology, Time Scales, and Correlation: Framework for a Historical Geology. SEPM Special Publication 54:317–333

  • Frailey CD (1986) Late Miocene and Holocene mammals, exclusive of the Notoungulata, of the Río Acre Region, western Amazonia. Contrib Sci LA County Mus (374):1–46

    Google Scholar 

  • Gardner AL (2008) Mammals of South America. Volume 1, Marsupials, Xenarthrans, Shrews, and Bats. University of Chicago Press, Chicago

  • Gaudin TJ (2004) Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence. Zool J Linn Soc 140:255–305

    Article  Google Scholar 

  • Green JL (2009) Dental microwear in the orthodentine of the Xenarthra (Mammalia) and its use in reconstructing the palaeodiet of extinct taxa: the case study of Nothrotheriops shastensis (Xenarthra, Tardigrada, Nothrotheriidae). Zool J Linn Soc 156:201–222

    Article  Google Scholar 

  • Hansen RM (1978) Shasta ground sloth food habits, Rampart cave, Arizona. Paleobiology 4:302–319

    Google Scholar 

  • Hirschfeld SE, Webb SD (1968) Plio-Pleistocene megalonychid sloths of North America. Bull Florida Mus Nat Hist 12:214–296

    Google Scholar 

  • Hoffstetter R (1958) Edentés Xénarthres. In: Piveteau J (ed) Traité de Paléontologie, Vol. 6(2). Masson et Cie, Paris, pp 535–636

  • Hoffstetter R (1982) Les Edentés Xénarthres, un groupe singulier de la faune néotropicale (origine, affinités, radiation adaptative, migrations et extinctions). In: Montanaro Galitelli E (ed). Proceedings of the First International Meeting on “Palaeontology, Essential of Historical Geology,” Venice, pp 385–443

  • Kalthoff D (2011) Microstructure of dental hard tissues in fossil and recent xenarthrans (Mammalia: Folivora and Cingulata). J Morphol 272:641–661

    Article  PubMed  Google Scholar 

  • Lara-Ruiz P, Garcia Chiarello A (2005) Life-history traits and sexual dimorphism of the Atlantic forest maned sloth Bradypus torquatus (Xenarthra: Bradypodidae). J Zool Lond 267:63–73

    Article  Google Scholar 

  • MacFadden BF, DeSantis LRG, Hochstein JL, Kamenov GD (2010) Physical properties, geochemistry, and diagenesis of xenarthran teeth: prospects for interpreting the paleoecology of extinct species. Palaeogeogr Palaeoclimatol Palaeoecol 291:180–189

    Article  Google Scholar 

  • Martin BE (1916) Tooth development in Dasypus novemcinctus. J Morphol 27:647–691

    Article  Google Scholar 

  • McDonald HG (2006) Sexual dimorphism in the skull of Harlan’s ground sloth. Contrib Sci LA County Mus (510):1–9

  • McDonald HG (2007) Biomechanical inferences of locomotion in ground sloths: integrating morphological and track data. In: Lucas SG, Spielmann JA, Lockley MG (eds) Cenozoic Vertebrate Tracks and Traces. New Mexico Museum of Natural History and Science Bulletin 42:201–208

  • McDonald HG (2012) Evolution of the pedolateral foot in ground sloths: patterns of change in the astragalus. J Mammal Evol. doi:10.1007/s10914-011-9182-x

  • McDonald HG, De Iuliis G (2008) Fossil history of sloths. In: Vizcaíno SF, Loughry WJ (eds) The Biology of the Xenarthra. The University of Florida Press, Gainesville, pp 39–55

    Google Scholar 

  • McDonald HG, Muizon C de (2002) The cranial anatomy of Thalassocnus (Xenarthra, Mammalia), a derived nothrothere from the Neogene of the Pisco Formation (Peru). J Vertebr Paleontol 22:349–365

    Article  Google Scholar 

  • McKenna MC, Wyss AR, Flynn JJ (2006) Paleogene Pseudoglyptodont xenarthrans from Central Chile and Central Patagonia. Am Mus Novitates (3536):1–18

  • Muizon C de, McDonald HG (1995) An aquatic sloth from the Pliocene of Peru. Nature 375:224–227

    Article  Google Scholar 

  • Muizon C de, McDonald HG, Salas R, Urbina M (2004) The evolution of feeding adaptations of the aquatic sloth Thalassocnus. J Vertebr Paleontol 24:398–410

    Article  Google Scholar 

  • Naples VL (1987) Reconstruction of cranial morphology and analysis of function in the Pleistocene ground sloth Nothrotheriops shastense (Mammalia, Megatheriidae). Contrib Sci LA County Mus (389):1–21

  • Naples VL (1989) The feeding mecanism in the Pleistocene ground sloth, Glossotherium. Contrib Sci LA County Mus (425):1–23

  • Nyakatura JA (2012) The convergent evolution of suspensory posture and locomotion in tree sloths. J Mammal Evol. doi:10.1007/s10914-011-9182-x

  • Nyakatura JA, Fischer MS (2010) Three-dimensional kinematic analysis of the pectoral girdle during upside-down locomotion of two-toed sloths (Choloepus didactylus, Linné 1758). Front Zool 7:1–16

    Article  Google Scholar 

  • Orr CM (2005) Knuckle-walking anteater: a convergence test of adaptation for purported knuckle-walking features of African hominidae. Am J Phys Anthropol 128:639–658

    Article  PubMed  Google Scholar 

  • Owen R (1842) Description of the Skeleton of an Extinct Gigantic Sloth, Mylodon robustus, Owen, with Observations on the Osteology, Natural Affinities, and Probable Habits of the Megatheroid Quadrupeds in General. Direction of the Council, London, 176 pp.

  • Pardiñas UF, Udrizar Sauthier DE, Carlini AA, Borrero L, Salazar-Bravo J (2008) ¿El último tardígrado de la Patagonia? In: Calvo JO, Juárez Valieri RD, Porfiri JD, dos Santos DD (eds) Actas III Congreso Latinoamericano de Paleontología de Vertebrados, Universidad Nacional de Comahue, Neuquén, pp 191A

  • Patterson B, Pascual R (1968) Evolution of mammals on southern continents. Quart Rev Biol 43:409–451

    Article  Google Scholar 

  • Pujos F, De Iuliis G (2007) Late Oligocene Megatherioidea Fauna (Mammalia: Xenarthra) from Salla-Luribay (Bolivia): new data on basal sloth radiation and Cingulata-Phyllophaga split. J Vertebr Paleontol 27:132–144

    Article  Google Scholar 

  • Pujos F, De Iuliis G, Argot C, Werdelin L (2007) A peculiar climbing Megalonychidae from the Pleistocene of Peru and its implications for sloth history. Zool J Linn Soc 149:179–235

    Article  Google Scholar 

  • Pujos F, De Iuliis G, Mamani Quispe B (2011) Hiskatherium saintandrei gen. et sp. nov.: an unusual sloth from the Santacrucian of Quebrada Honda (Bolivia) and an overview of middle Miocene, small megatherioids. J Vertebr Paleontol 31(5), 1131–1149

    Article  Google Scholar 

  • Reid F (1997) A Field Guide to the Mammals of Central America and Southeast Mexico. Oxford University Press, Oxford

    Google Scholar 

  • Rinderknecht A, Bostelmann E, Perea D, Lecuona G (2010) A new genus and species of Mylodontidae (Mammalia: Xenarthra) from the late Miocene of southern Uruguay, with comments on the systematics of the Mylodontinae. J Vertebr Paleontol 30:899–910

    Article  Google Scholar 

  • Rinderknecht A, Perea D, McDonald HG (2007). A new Mylodontinae (Mammalia, Xenarthra) from the Camacho Formation (late Miocene), Uruguay. J Vertebr Paleontol 27:744–747

    Article  Google Scholar 

  • Shockey BJ, Salas-Gismondi R, Baby P, Guyot J-L, Baltazar MC, Huamán L, Clack A, Stucchi M, Pujos F, Emerson JM, Flynn JJ (2009) New Pleistocene cave faunas of the Andes of Central Peru: radiocarbon ages and the survival of low latitude, Pleistocene DNA. Palaeontol Electron 12:1–15

    Google Scholar 

  • Simpson GG (1932) Enamel on the teeth of an Eocene edentate. Bull Am Mus Nat Hist 567:1–4

    Google Scholar 

  • Stock C (1917) Further observations on the skull structure of mylodont sloths from Rancho La Brea. Univ Calif Publ 10:165–178

    Google Scholar 

  • Stock C (1925) Cenozoic gravigrade edentates of western North America. Carnegie Inst Wash Publ 331:1–206

    Google Scholar 

  • Vizcaíno SF (2009) The teeth of the “toothless”: novelties and key innovations in the evolution of xenarthrans (Mammalia, Xenarthra). Paleobiology 35:343–366

    Article  Google Scholar 

  • Vizcaíno SF, Bargo MS, Cassini GH (2006) Dental occlusal surface area in relation to body mass, food habits and other biological features in fossil xenarthrans. Ameghiniana 43:11–26

    Google Scholar 

  • Vizcaíno SF, Zárate M, Bargo MS, Dondas A (2001). Pleistocene burrows in the Mar del Plata area (Argentina) and their probable builders. Acta Palaeontol Pol 46:289–301

    Google Scholar 

  • Webb SD (1989) Osteology and relationships of Thinobadistes segnis, the first mylodont sloth in North America. In: Redford JF, Webb, SD (eds) Advances in Neotropical Mammalogy. Sandhill Crane Press, Gainesville, pp 469–532

    Google Scholar 

  • White JL (1993) Indicators of locomotor habits in xenarthrans: evidence for locomotor heterogeneity among fossil sloths. J Vertebr Paleontol 13:230–242

    Article  Google Scholar 

  • White JL (1997) Locomotor adaptations in Miocene xenarthrans. In: Kay RF, Madden RH, Cifelli RL, Flynn JJ (eds) Vertebrate Paleontology in the Neotropics: the Miocene Fauna of La Venta, Columbia. Smithsonian Institution Press, Washington, DC, pp 246–264

    Google Scholar 

  • White JL, MacPhee RDE (2001) The sloths of the West Indies: a systematic and phylogenetic review. In: Woods CA (ed) Biogeography of the West Indies: Patterns and Perspectives. CRC Press, New York, pp 201–235

    Chapter  Google Scholar 

  • Winge H (1941) The Interrelationships of the Mammalian Genera, vol. 1: Monotremata, Marsupialia, Insectivora, Chiroptera, Edentata. C.A. Reitzels Forlag, Copenhagen

Download references

Acknowledgments

We thank Editor-in-Chief John Wible for agreeing to publish the proceedings of the symposium Form and Function of the Xenarthra (held in 2010 during the ICVM9 meeting in Punta Del Este, Uruguay) in the Journal of Mammalian Evolution. We also thank all of the participants in that symposium and in this volume for their excellent research and collegiality, which have made organizing the symposium and editing this volume such a pleasure for the first two authors of this manuscript (FP & TJG). We thank Jorge Gonzalez for providing the beautiful illustration of Pseudoglyptodon; John Wible and two anonymous reviewers for comments that greatly improved this work. Figure 2 is reproduced in part from Bargo et al. (2006a; Muzzle of South American Pleistocene Ground Sloths (Xenarthra, Tardigrada). J Morphol 267:248–263) with permission of John Wiley & Sons, Inc and the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Pujos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pujos, F., Gaudin, T.J., De Iuliis, G. et al. Recent Advances on Variability, Morpho-Functional Adaptations, Dental Terminology, and Evolution of Sloths. J Mammal Evol 19, 159–169 (2012). https://doi.org/10.1007/s10914-012-9189-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-012-9189-y

Keywords

Navigation