Skip to main content

Advertisement

Log in

Advances in Analyzing the Breast Cancer Lipidome and Its Relevance to Disease Progression and Treatment

  • Review Paper
  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Abnormal lipid metabolism is common in breast cancer with the three main subtypes, hormone receptor (HR) positive, human epidermal growth factor 2 (HER2) positive, and triple negative, showing common and distinct lipid dependencies. A growing body of studies identify altered lipid metabolism as impacting breast cancer cell growth and survival, plasticity, drug resistance, and metastasis. Lipids are a class of nonpolar or polar (amphipathic) biomolecules that can be produced in cells via de novo synthesis or acquired from the microenvironment. The three main functions of cellular lipids are as essential components of membranes, signaling molecules, and nutrient storage. The use of mass spectrometry-based lipidomics to analyze the global cellular lipidome has become more prevalent in breast cancer research. In this review, we discuss current lipidomic methodologies, highlight recent breast cancer lipidomic studies and how these findings connect to disease progression and therapeutic development, and the potential use of lipidomics as a diagnostic tool in breast cancer. A better understanding of the breast cancer lipidome and how it changes during drug resistance and tumor progression will allow informed development of diagnostics and novel targeted therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not Applicable.

Code Availability

Not Applicable.

Abbreviations

ACC:

Acetyl-CoA carboxylase

APCI:

Atmospheric pressure chemical ionization

APPI:

Atmospheric pressure polarization ionization

BmP:

Bis(monoacylglycero)phosphate

BUME:

Butanol/methanol

Cer:

Ceramide

ChEBI:

Chemical entities of biological interest

CL:

Cardiolipin

CPT1:

Carnitine palmitoyltransferase I

DESI:

Desorption electrospray ionization

DG:

Diacylglycerol

ER:

Estrogen receptor

ESI:

Electron spray ionization

FA:

Fatty acid

FAO:

Fatty acid oxidation

FASN:

Fatty acid synthase

GC-MS:

Gas chromatography mass spectrometry

GlcCer:

Glucosylceramide

HER2 + :

Human epidermal growth factor receptor 2-positive

HexCer:

Hexosylceramide

HMBD:

Human metabolome data base

HR:

Hormone receptor

LacCer:

Lactosylceramide

LION:

Lipid Ontology Enrichment Analysis

LIPEA:

Lipid Pathway Enrichment Analysis

LPC:

Lysophosphatidylcholine

MALDI:

Matrix assisted laser desorption/ionization

Met:

Methionine

MRI:

Magnetic resonance imaging

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

MTBE:

Methyl tert-butyl ether

MUFA:

Monounsaturated fatty acid

NMR:

Nuclear magnetic resonance

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositol

PI3K:

Phosphoinositide 3-kinase

PIP2:

Phosphatidylinositol (4,5)-trisphosphate

PIP3:

Phosphatidylinositol (3,4,5)-trisphosphate

PKC:

Protein kinase C

PLIN:

Perilipin

PR:

Progesterone receptor

PS:

Phosphatidylserine

PUFA:

Poly unsaturated fatty acid

SCD:

Stearoyl-CoA desaturase

SIMS:

Secondary ion mass spectrometry

SM:

Sphingomyelin

SREBP:

Sterol regulatory element-binding protein

SSO:

Sulfosuccinimidyl oleate

TCA:

Tricarboxylic acid

TG:

Triacylglycerol

TNBC:

Triple negative breast cancer

References

  1. Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020;122(1):4–22. https://doi.org/10.1038/s41416-019-0650-z.

    Article  CAS  PubMed  Google Scholar 

  2. Siegel RL, et al. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33. https://doi.org/10.3322/caac.21654.

    Article  PubMed  Google Scholar 

  3. Malhotra GK, et al. Histological, molecular and functional subtypes of breast cancers. Cancer Biol Ther. 2010;10(10):955–60. https://doi.org/10.4161/cbt.10.10.13879.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Come SE, et al. Second International Conference on Recent Advances and Future Directions in Endocrine Manipulation of Breast Cancer: summary consensus statement. Clin Cancer Res. 2003;9(1 Pt 2):443s-6s.

  5. Slamon D, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83. https://doi.org/10.1056/NEJMoa0910383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liedtke C, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26(8):1275–81. https://doi.org/10.1200/jco.2007.14.4147.

    Article  PubMed  Google Scholar 

  7. Messina C, et al. CDK4/6 inhibitors in advanced hormone receptor-positive/HER2-negative breast cancer: a systematic review and meta-analysis of randomized trials. Breast Cancer Res Treat. 2018;172(1):9–21. https://doi.org/10.1007/s10549-018-4901-0.

    Article  CAS  PubMed  Google Scholar 

  8. Pan H, et al. 20-Year Risks of Breast-Cancer Recurrence after Stopping Endocrine Therapy at 5 Years. N Engl J Med. 2017;377(19):1836–46. https://doi.org/10.1056/NEJMoa1701830.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dent R, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13(15 Pt 1):4429–34. https://doi.org/10.1158/1078-0432.Ccr-06-3045.

    Article  PubMed  Google Scholar 

  10. Reddy SM, et al. Long-term survival outcomes of triple-receptor negative breast cancer survivors who are disease free at 5 years and relationship with low hormone receptor positivity. Br J Cancer. 2018;118(1):17–23. https://doi.org/10.1038/bjc.2017.379.

    Article  CAS  PubMed  Google Scholar 

  11. Chumsri S, et al. Incidence of Late Relapses in Patients With HER2-Positive Breast Cancer Receiving Adjuvant Trastuzumab: Combined Analysis of NCCTG N9831 (Alliance) and NRG Oncology/NSABP B-31. J Clin Oncol. 2019;37(35):3425–35. https://doi.org/10.1200/jco.19.00443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cortesi L, Rugo HS, Jackisch C. An Overview of PARP Inhibitors for the Treatment of Breast Cancer. Target Oncol. 2021;16(3):255–82. https://doi.org/10.1007/s11523-021-00796-4.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927;8(6):519–30. https://doi.org/10.1085/jgp.8.6.519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011;144(5)646-74. S0092-8674(11)00127-9. https://doi.org/10.1016/j.cell.2011.02.013

  15. Griffiths J. A brief history of mass spectrometry. Anal Chem. 2008;80(15):5678–83. https://doi.org/10.1021/ac8013065.

    Article  CAS  PubMed  Google Scholar 

  16. Fenn JB, et al. Electrospray ionization for mass spectrometry of large biomolecules. Science. 1989;246(4926):64–71. https://doi.org/10.1126/science.2675315.

    Article  CAS  PubMed  Google Scholar 

  17. Hillenkamp F, et al. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem. 1991;63(24):1193a–203a. https://doi.org/10.1021/ac00024a002.

    Article  CAS  PubMed  Google Scholar 

  18. Murphy RC. Challenges in Mass Spectrometry-based Lipidomics of Neutral Lipids. Trends Analyt Chem. 2018;107:91–8. https://doi.org/10.1016/j.trac.2018.07.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Misra BB. Data normalization strategies in metabolomics: Current challenges, approaches, and tools. Eur J Mass Spectrom (Chichester). 2020;26(3):165–74. https://doi.org/10.1177/1469066720918446.

    Article  CAS  Google Scholar 

  20. Fahy E, et al. A comprehensive classification system for lipids. J Lipid Res. 2005;46(5):839–61. https://doi.org/10.1194/jlr.E400004-JLR200.

    Article  CAS  PubMed  Google Scholar 

  21. Agbaga MP, Mandal MN, Anderson RE. Retinal very long-chain PUFAs: new insights from studies on ELOVL4 protein. J Lipid Res. 2010;51(7):1624–42. https://doi.org/10.1194/jlr.R005025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Spector AA, Kim HY. Discovery of essential fatty acids. J Lipid Res. 2015;56(1):11–21. https://doi.org/10.1194/jlr.R055095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ballweg S, et al. Regulation of lipid saturation without sensing membrane fluidity. Nat Commun. 2020;11(1):756. https://doi.org/10.1038/s41467-020-14528-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fahy E, et al. Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res. 2009;50(Suppl):S9–14. https://doi.org/10.1194/jlr.R800095-JLR200

  25. Testerink N, et al. Depletion of phosphatidylcholine affects endoplasmic reticulum morphology and protein traffic at the Golgi complex. J Lipid Res. 2009;50(11):2182–92. https://doi.org/10.1194/jlr.M800660-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marsh D. Lateral pressure profile, spontaneous curvature frustration, and the incorporation and conformation of proteins in membranes. Biophys J. 2007;93(11):3884–99. https://doi.org/10.1529/biophysj.107.107938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suzuki J, et al. Calcium-dependent phospholipid scrambling by TMEM16F. Nature. 2010;468(7325):834–8. https://doi.org/10.1038/nature09583.

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki J, et al. Xk-related protein 8 and CED-8 promote phosphatidylserine exposure in apoptotic cells. Science. 2013;341(6144):403–6. https://doi.org/10.1126/science.1236758.

    Article  CAS  PubMed  Google Scholar 

  29. Ali MR, Cheng KH, Huang J. Ceramide drives cholesterol out of the ordered lipid bilayer phase into the crystal phase in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine/cholesterol/ceramide ternary mixtures. Biochemistry. 2006;45(41):12629–38. https://doi.org/10.1021/bi060610x.

    Article  CAS  PubMed  Google Scholar 

  30. Sezgin E, et al. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol. 2017;18(6):361–74. https://doi.org/10.1038/nrm.2017.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rajendran L, Simons K. Lipid rafts and membrane dynamics. J Cell Sci. 2005;118(Pt 6):1099–102. https://doi.org/10.1242/jcs.01681.

    Article  CAS  PubMed  Google Scholar 

  32. Sezgin E, et al. Adaptive lipid packing and bioactivity in membrane domains. PLoS ONE. 2015;10(4): e0123930. https://doi.org/10.1371/journal.pone.0123930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Parton RG, Simons K. Digging into caveolae. Science. 1995;269(5229):1398–9. https://doi.org/10.1126/science.7660120.

    Article  CAS  PubMed  Google Scholar 

  34. Simons K, van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988;27(17):6197–202. https://doi.org/10.1021/bi00417a001.

    Article  CAS  PubMed  Google Scholar 

  35. Casares D, Escribá PV, Rosselló CA. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues. Int J Mol Sci. 2019;20(9). https://doi.org/10.3390/ijms20092167

  36. Holthuis JC, et al. The organizing potential of sphingolipids in intracellular membrane transport. Physiol Rev. 2001;81(4):1689–723. https://doi.org/10.1152/physrev.2001.81.4.1689.

    Article  CAS  PubMed  Google Scholar 

  37. Dazzoni R, et al. The unprecedented membrane deformation of the human nuclear envelope, in a magnetic field, indicates formation of nuclear membrane invaginations. Sci Rep. 2020;10(1):5147. https://doi.org/10.1038/s41598-020-61746-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Houtkooper RH, Vaz FM. Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci. 2008;65(16):2493–506. https://doi.org/10.1007/s00018-008-8030-5.

    Article  CAS  PubMed  Google Scholar 

  39. Ghosh S, et al. An essential role for cardiolipin in the stability and function of the mitochondrial calcium uniporter. Proc Natl Acad Sci U S A. 2020;117(28):16383–90. https://doi.org/10.1073/pnas.2000640117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee RG, et al. Cardiolipin is required for membrane docking of mitochondrial ribosomes and protein synthesis. J Cell Sci. 2020;133(14). https://doi.org/10.1242/jcs.240374

  41. Escribá PV, et al. Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog Lipid Res. 2015;59:38–53. https://doi.org/10.1016/j.plipres.2015.04.003.

    Article  CAS  PubMed  Google Scholar 

  42. Thelen AM, Zoncu R. Emerging Roles for the Lysosome in Lipid Metabolism. Trends Cell Biol. 2017;27(11):833–50. https://doi.org/10.1016/j.tcb.2017.07.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: Gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids 2017;1862(10 Pt B):1221–1232. https://doi.org/10.1016/j.bbalip.2017.07.009

  44. Rudolph MC, et al. Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genomics. 2007;28(3):323–36. https://doi.org/10.1152/physiolgenomics.00020.2006.

    Article  CAS  PubMed  Google Scholar 

  45. Fukami K, et al. Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Prog Lipid Res. 2010;49(4):429–37. https://doi.org/10.1016/j.plipres.2010.06.001.

    Article  CAS  PubMed  Google Scholar 

  46. Baron CL, Malhotra V. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science. 2002;295(5553):325–8. https://doi.org/10.1126/science.1066759.

    Article  CAS  PubMed  Google Scholar 

  47. Yeaman C, et al. Protein kinase D regulates basolateral membrane protein exit from trans-Golgi network. Nat Cell Biol. 2004;6(2):106–12. https://doi.org/10.1038/ncb1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Han H, et al. Regulation of the Hippo Pathway by Phosphatidic Acid-Mediated Lipid-Protein Interaction. Mol Cell. 2018;72(2):328-340.e8. https://doi.org/10.1016/j.molcel.2018.08.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Santarpia L, et al. Deciphering and Targeting Oncogenic Mutations and Pathways in Breast Cancer. Oncologist. 2016;21(9):1063–78. https://doi.org/10.1634/theoncologist.2015-0369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Siskind LJ. Mitochondrial ceramide and the induction of apoptosis. J Bioenerg Biomembr. 2005;37(3):143–53. https://doi.org/10.1007/s10863-005-6567-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Züllig T, Trötzmüller M, Köfeler HC. Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem. 2020;412(10):2191–209. https://doi.org/10.1007/s00216-019-02241-y.

    Article  CAS  PubMed  Google Scholar 

  52. Hsu FF. Mass spectrometry-based shotgun lipidomics - a critical review from the technical point of view. Anal Bioanal Chem. 2018;410(25):6387–409. https://doi.org/10.1007/s00216-018-1252-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang K, Han X. Lipidomics: Techniques, Applications, and Outcomes Related to Biomedical Sciences. Trends Biochem Sci. 2016;41(11):954–69. https://doi.org/10.1016/j.tibs.2016.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7. https://doi.org/10.1139/o59-099.

    Article  CAS  PubMed  Google Scholar 

  55. Folch J, Lees M, Sloane Stanley GH, A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1): 497–509.

  56. Matyash V, et al. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49(5):1137–46. https://doi.org/10.1194/jlr.D700041-JLR200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Löfgren L, Forsberg GB, Ståhlman M. The BUME method: a new rapid and simple chloroform-free method for total lipid extraction of animal tissue. Sci Rep. 2016;6:27688. https://doi.org/10.1038/srep27688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Aldana J, Romero-Otero A, Cala MP. Exploring the Lipidome: Current Lipid Extraction Techniques for Mass Spectrometry Analysis. Metabolites. 2020;10(6). https://doi.org/10.3390/metabo10060231

  59. Leopold J, et al. Recent Developments of Useful MALDI Matrices for the Mass Spectrometric Characterization of Lipids. Biomolecules. 2018;8(4). https://doi.org/10.3390/biom8040173

  60. Han X, et al. Metabolomics in early Alzheimer's disease: identification of altered plasma sphingolipidome using shotgun lipidomics. PLoS One. 2011;6(7):e21643.https://doi.org/10.1371/journal.pone.0021643

  61. Jiang X, et al. Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low-abundance regime of cellular sphingolipids. Anal Biochem. 2007;371(2):135–45. https://doi.org/10.1016/j.ab.2007.08.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hommerson P, et al. Ionization techniques in capillary electrophoresis-mass spectrometry: principles, design, and application. Mass Spectrom Rev. 2011;30(6):1096–120. https://doi.org/10.1002/mas.20313.

    Article  CAS  PubMed  Google Scholar 

  63. Paglia G, et al. Applications of ion-mobility mass spectrometry for lipid analysis. Anal Bioanal Chem. 2015;407(17):4995–5007. https://doi.org/10.1007/s00216-015-8664-8.

    Article  CAS  PubMed  Google Scholar 

  64. Kanehisa M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353-d361. https://doi.org/10.1093/nar/gkw1092.

    Article  CAS  PubMed  Google Scholar 

  65. Wishart DS, et al, HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007;35(Database issue):D521–6. https://doi.org/10.1093/nar/gkl923

  66. Xia J, et al. MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009;37(Web Server issue):W652–60. https://doi.org/10.1093/nar/gkp356

  67. Molenaar MR, et al. LION/web: a web-based ontology enrichment tool for lipidomic data analysis. Gigascience. 2019;8(6). https://doi.org/10.1093/gigascience/giz061

  68. Acevedo A, et al. LIPEA: Lipid Pathway Enrichment Analysis. bioRxiv. 2018;274969. https://doi.org/10.1101/274969

  69. Eiriksson FF, et al. Lipidomic study of cell lines reveals differences between breast cancer subtypes. PLoS One. 2020;15(4): e0231289. https://doi.org/10.1371/journal.pone.0231289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kumar-Sinha C, et al. Transcriptome analysis of HER2 reveals a molecular connection to fatty acid synthesis. Cancer Res. 2003;63(1):132–9.

  71. Giudetti AM, et al. A specific lipid metabolic profile is associated with the epithelial mesenchymal transition program. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864(3):344–57. https://doi.org/10.1016/j.bbalip.2018.12.011.

    Article  CAS  PubMed  Google Scholar 

  72. Holder AM, et al. High stearoyl-CoA desaturase 1 expression is associated with shorter survival in breast cancer patients. Breast Cancer Res Treat. 2013;137(1):319–27. https://doi.org/10.1007/s10549-012-2354-4.

    Article  CAS  PubMed  Google Scholar 

  73. Nishida-Aoki N, et al. Lipidomic Analysis of Cells and Extracellular Vesicles from High- and Low-Metastatic Triple-Negative Breast Cancer. Metabolites. 2020;10(2). https://doi.org/10.3390/metabo10020067

  74. Almena M, Mérida I. Shaping up the membrane: diacylglycerol coordinates spatial orientation of signaling. Trends Biochem Sci. 2011;36(11):593–603. https://doi.org/10.1016/j.tibs.2011.06.005.

    Article  CAS  PubMed  Google Scholar 

  75. Gatenby RA, Gillies RJ. A microenvironmental model of carcinogenesis. Nat Rev Cancer. 2008;8(1):56–61. https://doi.org/10.1038/nrc2255.

    Article  CAS  PubMed  Google Scholar 

  76. Urbanelli L, et al. Lipidomic analysis of cancer cells cultivated at acidic pH reveals phospholipid fatty acids remodelling associated with transcriptional reprogramming. J Enzyme Inhib Med Chem. 2020;35(1):963–73. https://doi.org/10.1080/14756366.2020.1748025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kaiser P, Methionine Dependence of Cancer. Biomolecules. 2020;10(4). https://doi.org/10.3390/biom10040568

  78. Borrego SL, et al. Lipid remodeling in response to methionine stress in MDA-MBA-468 triple-negative breast cancer cells. J Lipid Res. 2021;62: 100056. https://doi.org/10.1016/j.jlr.2021.100056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kenny PA, et al. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol. 2007;1(1):84–96. https://doi.org/10.1016/j.molonc.2007.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther. 2016;163:94–108. https://doi.org/10.1016/j.pharmthera.2016.03.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vidavsky N, et al. Mapping and Profiling Lipid Distribution in a 3D Model of Breast Cancer Progression. ACS Cent Sci. 2019;5(5):768–80. https://doi.org/10.1021/acscentsci.8b00932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ogretmen B. Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer. 2018;18(1):33–50. https://doi.org/10.1038/nrc.2017.96.

    Article  CAS  PubMed  Google Scholar 

  83. Purwaha P, et al. Unbiased Lipidomic Profiling of Triple-Negative Breast Cancer Tissues Reveals the Association of Sphingomyelin Levels with Patient Disease-Free Survival. Metabolites. 2018;8(3). https://doi.org/10.3390/metabo8030041

  84. Hosokawa Y, et al. Recurrent triple-negative breast cancer (TNBC) tissues contain a higher amount of phosphatidylcholine (32:1) than non-recurrent TNBC tissues. PLoS ONE. 2017;12(8): e0183724. https://doi.org/10.1371/journal.pone.0183724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kang HS, et al. Protein and lipid MALDI profiles classify breast cancers according to the intrinsic subtype. BMC Cancer. 2011;11:465. https://doi.org/10.1186/1471-2407-11-465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hilvo M, et al. Novel theranostic opportunities offered by characterization of altered membrane lipid metabolism in breast cancer progression. Cancer Res. 2011;71(9):3236–45. https://doi.org/10.1158/0008-5472.Can-10-3894.

    Article  CAS  PubMed  Google Scholar 

  87. Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016;23(1):27–47. https://doi.org/10.1016/j.cmet.2015.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Smoczyński M. Role of Phospholipid Flux during Milk Secretion in the Mammary Gland. J Mammary Gland Biol Neoplasia. 2017;22(2):117–29. https://doi.org/10.1007/s10911-017-9376-9.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Glatz JF, Luiken JJ, Bonen A. Membrane fatty acid transporters as regulators of lipid metabolism: implications for metabolic disease. Physiol Rev. 2010;90(1):367–417. https://doi.org/10.1152/physrev.00003.2009.

    Article  CAS  PubMed  Google Scholar 

  90. Liang Y, et al. CD36 plays a critical role in proliferation, migration and tamoxifen-inhibited growth of ER-positive breast cancer cells. Oncogenesis. 2018;7(12):98. https://doi.org/10.1038/s41389-018-0107-x.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Feng WW, et al. CD36-Mediated Metabolic Rewiring of Breast Cancer Cells Promotes Resistance to HER2-Targeted Therapies. Cell Rep. 2019;29(11):3405-3420.e5. https://doi.org/10.1016/j.celrep.2019.11.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Casciano JC, et al. MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer. Br J Cancer. 2020;122(6):868–84. https://doi.org/10.1038/s41416-019-0711-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lupien LE, et al. Endocytosis of very low-density lipoproteins: an unexpected mechanism for lipid acquisition by breast cancer cells. J Lipid Res. 2020;61(2):205–18. https://doi.org/10.1194/jlr.RA119000327.

    Article  CAS  PubMed  Google Scholar 

  94. Lopes-Coelho F, et al. Breast cancer metabolic cross-talk: Fibroblasts are hubs and breast cancer cells are gatherers of lipids. Mol Cell Endocrinol. 2018;462(Pt B):93–106. https://doi.org/10.1016/j.mce.2017.01.031.

    Article  CAS  PubMed  Google Scholar 

  95. Santi A, et al. Cancer associated fibroblasts transfer lipids and proteins to cancer cells through cargo vesicles supporting tumor growth. Biochim Biophys Acta. 2015;1853(12):3211–23. https://doi.org/10.1016/j.bbamcr.2015.09.013.

    Article  CAS  PubMed  Google Scholar 

  96. Rybinska I, et al. Adipocytes in Breast Cancer, the Thick and the Thin. Cells. 2020;9(3). https://doi.org/10.3390/cells9030560

  97. Menendez JA, Lupu R. Fatty acid synthase regulates estrogen receptor-α signaling in breast cancer cells. Oncogenesis. 2017;6(2): e299. https://doi.org/10.1038/oncsis.2017.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ravi D, et al. Oncogenic Integration of Nucleotide Metabolism via Fatty Acid Synthase in Non-Hodgkin Lymphoma. Front Oncol. 2021;11(4373). https://doi.org/10.3389/fonc.2021.725137

  99. Ferraro GB, et al. Fatty acid synthesis is required for breast cancer brain metastasis. Nat Cancer. 2021;2(4):414–28. https://doi.org/10.1038/s43018-021-00183-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109(9):1125–31. https://doi.org/10.1172/jci15593.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Adams CM, et al. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. J Biol Chem. 2004;279(50):52772–80. https://doi.org/10.1074/jbc.M410302200.

    Article  CAS  PubMed  Google Scholar 

  102. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell. 1997;89(3):331–40. https://doi.org/10.1016/s0092-8674(00)80213-5.

    Article  CAS  PubMed  Google Scholar 

  103. Yokoyama C, et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell. 1993;75(1):187–97.

  104. Bennett MK, et al. Sterol regulation of fatty acid synthase promoter. Coordinate feedback regulation of two major lipid pathways. J Biol Chem. 1995;270(43):25578–83. https://doi.org/10.1074/jbc.270.43.25578

  105. Rudolph MC, et al. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium. Am J Physiol Endocrinol Metab. 2010;299(6):E918–27. https://doi.org/10.1152/ajpendo.00376.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Belkaid A, et al. 17β-estradiol induces stearoyl-CoA desaturase-1 expression in estrogen receptor-positive breast cancer cells. BMC Cancer. 2015;15:440. https://doi.org/10.1186/s12885-015-1452-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fhu CW, Ali A. Protein Lipidation by Palmitoylation and Myristoylation in Cancer. Front Cell Development Biol. 2021;9(1054). https://doi.org/10.3389/fcell.2021.673647

  108. Menendez JA, Lupu R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer. 2007;7(10):763–77. https://doi.org/10.1038/nrc2222.

    Article  CAS  PubMed  Google Scholar 

  109. Schlaepfer IR, et al. Progestin modulates the lipid profile and sensitivity of breast cancer cells to docetaxel. Mol Cell Endocrinol. 2012;363(1–2):111–21. https://doi.org/10.1016/j.mce.2012.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mast FD, et al. Peroxisome biogenesis: something old, something new, something borrowed. Physiology (Bethesda). 2010;25(6):347–56. https://doi.org/10.1152/physiol.00025.2010.

    Article  CAS  Google Scholar 

  111. McCleland ML, et al. An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer. Cancer Res. 2012;72(22):5812–23. https://doi.org/10.1158/0008-5472.Can-12-1098.

    Article  CAS  PubMed  Google Scholar 

  112. Shen L, et al. Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proc Natl Acad Sci U S A. 2015;112(17):5425–30. https://doi.org/10.1073/pnas.1501555112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Camarda R, et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat Med. 2016;22(4):427–32. https://doi.org/10.1038/nm.4055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Campbell IG, et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res. 2004;64(21):7678–81. https://doi.org/10.1158/0008-5472.Can-04-2933.

    Article  CAS  PubMed  Google Scholar 

  115. Nik-Zainal S, et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature. 2016;534(7605):47–54. https://doi.org/10.1038/nature17676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fruman DA, et al. The PI3K Pathway in Human Disease. Cell. 2017;170(4):605–35. https://doi.org/10.1016/j.cell.2017.07.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kruger DT, et al. Hierarchical clustering of activated proteins in the PI3K and MAPK pathways in ER-positive, HER2-negative breast cancer with potential therapeutic consequences. Br J Cancer. 2018;119(7):832–9. https://doi.org/10.1038/s41416-018-0221-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hoxhaj G, et al. Direct stimulation of NADP(+) synthesis through Akt-mediated phosphorylation of NAD kinase. Science. 2019;363(6431):1088–92. https://doi.org/10.1126/science.aau3903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ward PS, Thompson CB. Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol. 2012;4(7): a006783. https://doi.org/10.1101/cshperspect.a006783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gouw AM, et al. The MYC Oncogene Cooperates with Sterol-Regulated Element-Binding Protein to Regulate Lipogenesis Essential for Neoplastic Growth. Cell Metab. 2019;30(3):556-572.e5. https://doi.org/10.1016/j.cmet.2019.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wang L, Zhang S, Wang, X. The Metabolic Mechanisms of Breast Cancer Metastasis. Front Oncol. 2021;10(2942). https://doi.org/10.3389/fonc.2020.602416

  122. Wei Q, et al. Metabolic rewiring in the promotion of cancer metastasis: mechanisms and therapeutic implications. Oncogene. 2020;39(39):6139–56. https://doi.org/10.1038/s41388-020-01432-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Morris E, et al. Implications of Overdiagnosis: Impact on Screening Mammography Practices. Popul Health Manag. 2015;18 Suppl 1(Suppl 1):S3–11. https://doi.org/10.1089/pop.2015.29023.mor

  124. Krizmanich-Conniff KM, et al. Triple receptor-negative breast cancer: imaging and clinical characteristics. AJR Am J Roentgenol. 2012;199(2):458–64. https://doi.org/10.2214/ajr.10.6096.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Krol I, et al. Detection of clustered circulating tumour cells in early breast cancer. Br J Cancer. 2021;125(1):23–7. https://doi.org/10.1038/s41416-021-01327-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Silva AAR, et al. Multiplatform Investigation of Plasma and Tissue Lipid Signatures of Breast Cancer Using Mass Spectrometry Tools. Int J Mol Sci. 2020;21(10). https://doi.org/10.3390/ijms21103611

  127. Chen X, et al. Plasma lipidomics profiling identified lipid biomarkers in distinguishing early-stage breast cancer from benign lesions. Oncotarget. 2016;7(24):36622–31. https://doi.org/10.18632/oncotarget.9124.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Eghlimi R, et al. Triple Negative Breast Cancer Detection Using LC-MS/MS Lipidomic Profiling. J Proteome Res. 2020;19(6):2367–78. https://doi.org/10.1021/acs.jproteome.0c00038.

    Article  CAS  PubMed  Google Scholar 

  129. Hilvo M, et al. Monounsaturated fatty acids in serum triacylglycerols are associated with response to neoadjuvant chemotherapy in breast cancer patients. Int J Cancer. 2014;134(7):1725–33. https://doi.org/10.1002/ijc.28491.

    Article  CAS  PubMed  Google Scholar 

  130. Fhu CW, Ali A. Fatty Acid Synthase: An Emerging Target in Cancer. Molecules (Basel, Switzerland). 2020;25(17):3935. https://doi.org/10.3390/molecules25173935.

    Article  CAS  Google Scholar 

  131. Kuhajda FP, et al. Synthesis and antitumor activity of an inhibitor of fatty acid synthase. Proc Natl Acad Sci U S A. 2000;97(7):3450–4. https://doi.org/10.1073/pnas.050582897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ueda SM, et al. Trophoblastic neoplasms express fatty acid synthase, which may be a therapeutic target via its inhibitor C93. Am J Pathol. 2009;175(6):2618–24. https://doi.org/10.2353/ajpath.2009.081162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Oliveras G, et al. Novel anti-fatty acid synthase compounds with anti-cancer activity in HER2+ breast cancer. Ann N Y Acad Sci. 2010;1210:86–92. https://doi.org/10.1111/j.1749-6632.2010.05777.x.

    Article  CAS  PubMed  Google Scholar 

  134. Hardwicke MA, et al. A human fatty acid synthase inhibitor binds β-ketoacyl reductase in the keto-substrate site. Nat Chem Biol. 2014;10(9):774–9. https://doi.org/10.1038/nchembio.1603.

    Article  CAS  PubMed  Google Scholar 

  135. Vázquez MJ, et al. Discovery of GSK837149A, an inhibitor of human fatty acid synthase targeting the beta-ketoacyl reductase reaction. Febs j. 2008;275(7):1556–67. https://doi.org/10.1111/j.1742-4658.2008.06314.x.

    Article  CAS  PubMed  Google Scholar 

  136. Alwarawrah Y, et al. Fasnall, a Selective FASN Inhibitor, Shows Potent Anti-tumor Activity in the MMTV-Neu Model of HER2(+) Breast Cancer. Cell Chem Biol. 2016;23(6):678–88. https://doi.org/10.1016/j.chembiol.2016.04.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gruslova A, et al. FASN inhibition as a potential treatment for endocrine-resistant breast cancer. Breast Cancer Res Treat. 2021;187(2):375–86. https://doi.org/10.1007/s10549-021-06231-6.

    Article  CAS  PubMed  Google Scholar 

  138. Corominas-Faja B, et al. Chemical inhibition of acetyl-CoA carboxylase suppresses self-renewal growth of cancer stem cells. Oncotarget. 2014;5(18):8306–16. https://doi.org/10.18632/oncotarget.2059.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Baek AE, et al. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun. 2017;8(1):864. https://doi.org/10.1038/s41467-017-00910-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Van Wyhe RD, Rahal OM, Woodward WA. Effect of statins on breast cancer recurrence and mortality: a review. Breast Cancer (Dove Med Press). 2017;9:559–65. https://doi.org/10.2147/bctt.S148080.

    Article  Google Scholar 

  141. Sethunath V, et al. Targeting the Mevalonate Pathway to Overcome Acquired Anti-HER2 Treatment Resistance in Breast Cancer. Mol Cancer Res. 2019;17(11):2318–30. https://doi.org/10.1158/1541-7786.Mcr-19-0756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Lettiero B, et al. Insensitivity to atorvastatin is associated with increased accumulation of intracellular lipid droplets and fatty acid metabolism in breast cancer cells. Sci Rep. 2018;8(1):5462. https://doi.org/10.1038/s41598-018-23726-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Cai D, et al. RORγ is a targetable master regulator of cholesterol biosynthesis in a cancer subtype. Nat Commun. 2019;10(1):4621. https://doi.org/10.1038/s41467-019-12529-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cai D, Zhang X, Chen HW. A master regulator of cholesterol biosynthesis constitutes a therapeutic liability of triple negative breast cancer. Mol Cell Oncol. 2020;7(2):1701362. https://doi.org/10.1080/23723556.2019.1701362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. van Weverwijk A, et al. Metabolic adaptability in metastatic breast cancer by AKR1B10-dependent balancing of glycolysis and fatty acid oxidation. Nat Commun. 2019;10(1):2698. https://doi.org/10.1038/s41467-019-10592-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Yang J, Park KW, Cho S. Inhibition of the CD36 receptor reduces visceral fat accumulation and improves insulin resistance in obese mice carrying the BDNF-Val66Met variant. J Biol Chem. 2018;293(34):13338–48. https://doi.org/10.1074/jbc.RA118.002405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rena G, Hardie DG, Pearson ER. The mechanisms of action of metformin. Diabetologia. 2017;60(9):1577–85. https://doi.org/10.1007/s00125-017-4342-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bodmer M, et al. Long-Term Metformin Use Is Associated With Decreased Risk of Breast Cancer. Diabetes Care. 2010;33(6):1304. https://doi.org/10.2337/dc09-1791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lord SR, et al. Transcriptomic analysis of human primary breast cancer identifies fatty acid oxidation as a target for metformin. Br J Cancer. 2020;122(2):258–65. https://doi.org/10.1038/s41416-019-0665-5.

    Article  CAS  PubMed  Google Scholar 

  150. Gammone MA, et al. Omega-3 Polyunsaturated Fatty Acids: Benefits and Endpoints in Sport. Nutrients. 2018;11(1). https://doi.org/10.3390/nu11010046

  151. Preta G, New Insights Into Targeting Membrane Lipids for Cancer Therapy. Front Cell Development Biol. 2020;8(876). https://doi.org/10.3389/fcell.2020.571237

  152. Tošić I, et al. Lipidome-based Targeting of STAT3-driven Breast Cancer Cells Using Poly-l-glutamic Acid–coated Layer-by-Layer Nanoparticles. Mol Cancer Ther. 2021;20(4):726. https://doi.org/10.1158/1535-7163.MCT-20-0505.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Yamada T, et al. Development of a lipid profiling system using reverse-phase liquid chromatography coupled to high-resolution mass spectrometry with rapid polarity switching and an automated lipid identification software. J Chromatogr A. 2013;1292:211–8. https://doi.org/10.1016/j.chroma.2013.01.078.

    Article  CAS  PubMed  Google Scholar 

  154. Breitkopf SB, et al. A relative quantitative positive/negative ion switching method for untargeted lipidomics via high resolution LC-MS/MS from any biological source. Metabolomics. 2017;13(3). https://doi.org/10.1007/s11306-016-1157-8

  155. Brovkovych V, et al. Removal of Serum Lipids and Lipid-Derived Metabolites to Investigate Breast Cancer Cell Biology. Proteomics. 2019;19(18): e1800370. https://doi.org/10.1002/pmic.201800370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Thiele C, Wunderling K, Leyendecker P. Multiplexed and single cell tracing of lipid metabolism. Nat Methods. 2019;16(11):1123–30. https://doi.org/10.1038/s41592-019-0593-6.

    Article  CAS  PubMed  Google Scholar 

  157. Triebl A, Wenk, MR. Analytical Considerations of Stable Isotope Labelling in Lipidomics. Biomolecules. 2018;8(4). https://doi.org/10.3390/biom8040151

  158. Wilson N, et al. Lobular Breast Cancer: A Review. Front Oncol. 2021;10(3091). https://doi.org/10.3389/fonc.2020.591399

  159. Wattigney WA, et al. Increasing impact of obesity on serum lipids and lipoproteins in young adults. The Bogalusa Heart Study. Arch Intern Med 1991;151(10):2017–22.

  160. Grundy SM, Denke MA. Dietary influences on serum lipids and lipoproteins. J Lipid Res. 1990;31(7):1149–72.

Download references

Funding

This work was funded in part by the National Institute of Health [R01CA140985 and R01CA229697(CAS)] and Breast Cancer Research Foundation [19–144 (CAS)]. AVW was supported by the National Institutes of Health (F31 CA261053, T32 CA190216, and linked award TL1 TR002533). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health foundation for the national institutes of health, R01CA140985, Carol A Sartorius, F31CA261053, Ashley V. Ward, T32CA190216, Ashley V. Ward, breast cancer research foundation, 19–144, Carol A Sartorius, cancer league of colorado, TL1TR002533, Ashley V. Ward

Author information

Authors and Affiliations

Authors

Contributions

Ashley Ward – conception, review of the literature, draft preparation, editing. Steven Anderson – conception, editing. Carol Sartorius – conception, editing.

Corresponding author

Correspondence to Carol A. Sartorius.

Ethics declarations

Studies Involving Humans and/or Animals

Not Applicable.

Ethics Approval

Not Applicable.

Consent to Participate

Not Applicable.

Consent for Publication

The authors give their consent for publication.

Conflicts of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ward, A.V., Anderson, S.M. & Sartorius, C.A. Advances in Analyzing the Breast Cancer Lipidome and Its Relevance to Disease Progression and Treatment. J Mammary Gland Biol Neoplasia 26, 399–417 (2021). https://doi.org/10.1007/s10911-021-09505-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-021-09505-3

Keywords

Navigation