Skip to main content
Log in

cIAP2 Is an Independent Signaling and Survival Factor during Mammary Lactational Involution and Tumorigenesis

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Cellular inhibitor of apoptosis proteins-1 and -2 (cIAP1/2) are integral to regulation of apoptosis and signaling by the tumor necrosis factor (TNF) and related family of receptors. The expression of cIAP2 in tissues is typically low and considered functionally redundant with cIAP1, however cIAP2 can be activated by a variety of cellular stresses. Members of the TNFR family and their ligands have essential roles in mammary gland biology. We have found that cIAP2−/− virgin mammary glands have reduced ductal branching and delayed lobuloalveogenesis in early pregnancy. Post-lactational involution involves two phases where the first phase is reversible and is mediated, in part, by TNFR family ligands. In cIAP2−/− mice mammary glands appeared engorged at mid-lactation accompanied by enhanced autophagic flux and decreased cIAP1 protein expression. Severely stretched myoepithelium was associated with BIM-EL expression and other indicators of anoikis. Within 24 h after forced or natural weaning, cIAP2−/− glands had nearly completed involution. The TNF-related weak inducer of apoptosis (Tweak) which results in degradation of cIAP1 through its receptor, Fn14, began to increase in late lactation and was significantly increased in cIAP2−/− relative to WT mice by 12 h post weaning accompanied by decreased cIAP1 protein expression. Carcinogen/progesterone-induced mammary tumorigenesis was significantly delayed in cIAP2−/− mice and tumors contained high numbers of apoptotic cells. We conclude that cIAP2 has a critical role in the mammary gland wherein it prevents rapid involution induced by milk stasis-induced stress associated with Tweak activation and contributes to the survival of mammary tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1: Expression of cIAP1/2 and histological comparison between cIAP2 null and wild-type mammary glands during development.
Fig. 2: Histological evidence of precocious involution in cIAP2−/− mammary glands.
Fig. 3: Absence of cIAP2 results in hyperactivation of Tweak expression and amplified death signaling in vivo.
Fig. 4: Evidence for autophagy and anoikis-associated cell death signaling prior to weaning in cIAP2−/− mammary tissue.
Fig. 5: Absence of cIAP2 results in accelerated mammary involution associated with precocious apoptosis.
Fig. 6: Mice lacking cIAP2 develop tumors with long relative latency.
Fig. 7: Proposed roles of cIAP2 in the mammary gland.

Similar content being viewed by others

References

  1. Watson CJ, Khaled WT. Mammary development in the embryo and adult: a journey of morphogenesis and commitment. Development. 2008;135:995–1003.

    Article  PubMed  CAS  Google Scholar 

  2. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, et al. Control of mammary stem cell function by steroid hormone signalling. Nature. 2010;465:798–802.

    Article  PubMed  CAS  Google Scholar 

  3. Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL, et al. Progesterone induces adult mammary stem cell expansion. Nature. 2010;465:803–7.

    Article  PubMed  CAS  Google Scholar 

  4. Schramek D, Leibbrandt A, Sigl V, Kenner L, Pospisilik JA, Lee HJ, et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468:98–102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lund LR, Rømer J, Thomasset N, Solberg H, Pyke C, Bissell MJ, et al. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and -dependent pathways. Development. 1996;122:181–93.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Li M, Liu X, Robinson G, Bar-Peled U, Wagner KU, Young WS, et al. Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc Natl Acad Sci U S A. 1997;94:3425–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Clarkson RW, Wayland MT, Lee J, Freeman T, Watson CJ. Gene expression profiling of mammary gland development reveals putative roles for death receptors and immune mediators in post-lactational regression. Breast Cancer Res. 2004;6:R92–109.

    Article  PubMed  CAS  Google Scholar 

  8. Kritikou EA, Sharkey A, Abell K, Came PJ, Anderson E, Clarkson RW, et al. A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development. 2003;130:3459–68.

    Article  PubMed  CAS  Google Scholar 

  9. Mahoney DJ, Cheung HH, Mrad RL, Plenchette S, Simard C, Enwere E, et al. Both cIAP1 and cIAP2 regulate TNFalpha-mediated NF-kappaB activation. Proc Natl Acad Sci USA. 2008;105:11778–83.

    Article  PubMed  Google Scholar 

  10. Hamanaka RB, Bobrovnikova-Marjon E, Ji X, Liebhaber SA, Diehl JA. PERK-dependent regulation of IAP translation during ER stress. Oncogene. 2009;28:910–20.

    Article  PubMed  CAS  Google Scholar 

  11. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault M, Durkin J, et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell. 2008;30:689–700.

    Article  PubMed  CAS  Google Scholar 

  12. Silke J, Vucic D. IAP family of cell death and signaling regulators. Methods Enzymol. 2014;545:35–65.

    Article  PubMed  CAS  Google Scholar 

  13. Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell. 2008;133:693–703.

    Article  PubMed  CAS  Google Scholar 

  14. Lin Y, Devin A, Rodriguez Y, Liu ZG. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 1999;13:2514–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Zarnegar BJ, Wang Y, Mahoney DJ, Dempsey PW, Cheung HH, He J, et al. Noncanonical NF-kappaB activation requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2 and TRAF3 and the kinase NIK. Nat Immunol 2008; 9: 1371–8

  16. Saitoh T, Nakayama M, Nakano H, Yagita H, Yamamoto N, Yamaoka S. TWEAK induces NF-κB2 p100 processing and long lasting NF-κB activation. J Biol Chem. 2003;278:36005–12.

    Article  PubMed  CAS  Google Scholar 

  17. Vince JE, Chau D, Callus B, Wong WW, Hawkins CJ, Schneider P, et al. TWEAK-FN14 signaling induces lysosomal degradation of a cIAP1-TRAF2 complex to sensitize tumor cells to TNFalpha. J Cell Biol. 2008;182:171–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ikner A, Ashkenazi A. TWEAK induces apoptosis through a death-signaling complex comprising receptor-interacting protein 1 (RIP1), Fas-associated death domain (FADD), and caspase-8. J Biol Chem. 2011;286:21546–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Silke J, Vaux DL. IAP gene deletion and conditional knockout models. Semin Cell Dev Biol. 2015;39:97–105.

    Article  PubMed  CAS  Google Scholar 

  20. Conte D, Holcik M, Lefebvre CA, Lacasse E, Picketts DJ, Wright KE, et al. Inhibitor of apoptosis protein cIAP2 is essential for lipopolysaccharide-induced macrophage survival. Mol Cell Biol. 2006;26:699–708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wright CW, Duckett CS. (2005). Reawakening the cellular death program in neoplasia through the therapeutic blockade of IAP function. J Clin Invest. 2005;115:2673–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Xu L, Zhu J, Hu X, Zhu H, Kim HT, LaBaer J, et al. c-IAP1 cooperates with Myc by acting as a ubiquitin ligase for Mad1. Mol Cell. 2007;28:914–22.

    Article  PubMed  CAS  Google Scholar 

  23. Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, et al. Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 2007;12:115–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Keats JJ, Fonseca R, Chesi M, Schop R, Baker A, Chng WJ, et al. Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell. 2007;12:131–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. DiDonato JA, Mercurio F, NF-kappaB KM. The link between inflammation and cancer. Immunol Rev. 2012;246:379–400.

    Article  PubMed  CAS  Google Scholar 

  26. Rinkenbaugh AL, Baldwin AS. The NF-κB pathway and Cancer stem cells. Cells. 2016;5:E16. https://doi.org/10.3390/cells5020016.

    Article  PubMed  CAS  Google Scholar 

  27. Owens TW, Foster FM, Tanianis-Hughes J, Cheung JY, Brackenbury L, Streuli CH. Analysis of inhibitor of apoptosis protein family expression during mammary gland development. BMC Dev Biol. 2010;10:71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Olayioye MA, Kaufmann H, Pakusch M, Vaux DL, Lindeman GJ, Visvader JE. XIAP-deficiency leads to delayed lobuloalveolar development in the mammary gland. Cell Death Diff. 2005;12:87–90.

    Article  CAS  Google Scholar 

  29. Kreuzaler PA, Staniszewska AD, Li W, Omidvar N, Kedjouar B, Turkson J, et al. Stat3 controls lysosomal-mediated cell death in vivo. Nat Cell Biol. 2011;13:303–9.

    Article  PubMed  CAS  Google Scholar 

  30. Beug ST, Beauregard CE, Healy C, Sanda T, St-Jean M, Chabot J, et al. Smac mimetics synergize with immune checkpoint inhibitors to promote tumour immunity against glioblastoma. Nat Commun. 2017; https://doi.org/10.1038/ncomms14278.

  31. Cao Y, Bonizzi G, Seagroves TN, Greten FR, Johnson R, Schmidt EV, et al. IKKalpha provides an essential link between RANK signaling and cyclin D1 expression during mammary gland development. Cell. 2001;107:763–75.

    Article  PubMed  CAS  Google Scholar 

  32. Clarkson RW, Heeley JL, Chapman R, Aillet F, Hay RT, Wyllie A, et al. NF-kappaB inhibits apoptosis in murine mammary epithelia. J Biol Chem. 2000;275:12737–42.

    Article  PubMed  CAS  Google Scholar 

  33. Pensa S, Lloyd-Lewis B, Sargeant TJ, Resemann HK, Kahn CR, Watson CJ. Signal transducer and activator of transcription 3 and the phosphatidylinositol 3-kinase regulatory subunits p55α and p50α regulate autophagy in vivo. FEBS J. 2014;281:4557–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ma Z, Liu Z, Myers DP, Terada LS. Mechanotransduction and anoikis: death and the homeless cell. Cell Cycle. 2008;7:2462–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Paoli P, Giannoni E, Chiarugi P. Anoikis molecular pathways and its role in cancer progression. Bio Biophys Acta. 2013;1833:3481–98.

    Article  CAS  Google Scholar 

  36. Wen HC, Avivar-Valderas A, Sosa MS, Girnius N, Farias EF, Davis RJ, et al. p38α signaling induces Anoikis and lumen formation during mammary morphogenesis. Sci Signal. 2011;4(174):ra34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Reginato MJ, Mills KR, Paulus JK, Lynch DK, Sgroi DC, Debnath J, et al. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nat Cell Biol. 2003;5:733–40.

    Article  PubMed  CAS  Google Scholar 

  38. Ley R, Ewings KE, Hadfield K, Cook SJ. Regulatory phosphorylation of Bim: sorting out the ERK from the JNK. Cell Death Differ. 2005;12:1008–14.

    Article  PubMed  CAS  Google Scholar 

  39. Yun S, Vincelette ND, Knorr KL, Almada LL, Schneider PA, Peterson KL, et al. 4EBP1/c-MYC/PUMA and NF-κB/EGR1/BIM pathways underlie cytotoxicity of mTOR dual inhibitors in malignant lymphoid cells. Blood. 2016;127:271127–2.

    Article  CAS  Google Scholar 

  40. Charvet C, Alberti I, Luciano F, Jacquel A, Bernard A, Auberger P, et al. Proteolytic regulation of Forkhead transcription factor FOXO3a by caspase-3-like proteases. Oncogene. 2003;22:4557–68.

    Article  PubMed  CAS  Google Scholar 

  41. Sargeant TJ, Lloyd-Lewis B, Resemann HK, Ramos-Montoya A, Skepper J, Watson CJ. Stat3 controls cell death during mammary gland involution by regulating uptake of milk fat globules and lysosomal membrane permeabilization. Nat Cell Biol. 2014;16:1057–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Baxter FO, Came PJ, Abel K, Kedjouar B, Huth M, Rajewsky K, et al. IKKbeta/2 induces TWEAK and apoptosis in mammary epithelial cells. Development. 2006;133:3485–94.

    Article  PubMed  CAS  Google Scholar 

  43. Scaffidi C, Medema JP, Krammer PH, Peter ME. FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J Biol Chem. 1997;272:26953–8.

    Article  PubMed  CAS  Google Scholar 

  44. Hojilla CV, Jackson HW, Khokha R. TIMP3 regulates mammary epithelial apoptosis with immune cell recruitment through differential TNF dependence. PLoS One. 2011;6(10):e26718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Aldaz CM, Liao QY, LaBate M, Johnston DA. Medroxyprogesterone acetate accelerates the development and increases the incidence of mouse mammary tumors induced by dimethylbenzanthracene. Carcinogenesis. 1996;17:2069–72.

    Article  PubMed  CAS  Google Scholar 

  46. Varfolomeev E, Goncharov T, Maecker H, Zobel K, Kömüves LG, Deshayes K, et al. Cellular inhibitors of apoptosis are global regulators of NF-κB and MAPK activation by members of the TNF family of receptors. Sci Signal. 2012;5(216):ra22.

    Article  PubMed  CAS  Google Scholar 

  47. Michaelson JS, Cho S, Browning B, Zheng TS, Lincecum JM, Wang MZ, et al. Tweak induces mammary epithelial branching morphogenesis. Oncogene. 2005;24:2613–24.

    Article  PubMed  CAS  Google Scholar 

  48. Voutilainen M, Lindfors PH, Lefebvre S, Ahtiainen L, Fliniaux I, Rysti E, et al. Ectodysplasin regulates hormone-independent mammary ductal morphogenesis via NF-κB. Preoc Natl Acad Sci U S A. 2012;109:5744–9.

    Article  Google Scholar 

  49. Liu Z, Li H, Wu X, Yoo BH, Yan SR, Stadnyk AW, et al. Detachment-induced upregulation of XIAP and cIAP2 delays anoikis of intestinal epithelial cells. Oncogene. 2006;25:7680–90.

    Article  PubMed  CAS  Google Scholar 

  50. Sherrill KW, Lloyd RE. Translation of cIAP2 mRNA is mediated exclusively by a stress-modulated ribosome shunt. Mol Cell Biol. 2008;28:2011–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Abell K, Bilancio A, Clarkson RW, Tiffen PG, Altaparmakov AI, Burdon TG, et al. Stat3-induced apoptosis requires a molecular switch in PI(3)K subunit composition. Nat Cell Biol. 2005;7(4):392–8.

  52. Wei B, Chen Z, Zhang X, Feldman M, Dong XZ, Doran R, et al. Nitric oxide mediates stretch-induced Ca2+ release via activation of phosphatidylinositol 3-kinase-Akt pathway in smooth muscle. PLoS One. 2008;3(6):e2526.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Schuler F, Baumgartner F, Klepsch V, Chamson M, Müller-Holzner E, Watson CJ, et al. The BH3-only protein BIM contributes to late-stage involution in the mouse mammary gland. Cell Death Differ. 2016;23:41–51.

    Article  PubMed  CAS  Google Scholar 

  54. LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG. IAP-targeted therapies for cancer. Oncogene. 2008;27:6252–75.

    Article  PubMed  CAS  Google Scholar 

  55. Cao Y, Luo JL, Karin M. IkappaB kinase alpha kinase activity is required for self-renewal of ErbB2/Her2-transformed mammary tumor-initiating cells. Proc Natl Acad Sci USA. 2007;104:15852–7.

    Article  PubMed  Google Scholar 

  56. Pratt MAC, Bishop TE, White D, Yasvinski G, Menard M, Niu MY, et al. Estrogen withdrawal-induced NF-kappaB activity and bcl-3 expression in breast cancer cells: roles in growth and hormone independence. Mol Cell Biol. 2003;23:6887–900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Schoemaker MH, Ros JE, Homan M, Trautwein C, Liston P, Poelstra K, et al. Cytokine regulation of pro- and anti-apoptotic genes in rat hepatocytes: NF-kappaB-regulated inhibitor of apoptosis protein 2 (cIAP2) prevents apoptosis. J Hepatol. 2002;36:742–50.

    Article  PubMed  CAS  Google Scholar 

  58. Gonzalez-Suarez E, Jacob AP, Jones J, Miller R, Roudier-Meyer MP, Erwert R, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468:103–7.

    Article  PubMed  CAS  Google Scholar 

  59. Fulda S. Promises and challenges of Smac mimetics as Cancer therapeutics. Clin Cancer Res. 2015;21:5030–6.

    Article  PubMed  CAS  Google Scholar 

  60. Varfolomeev E, Blankenship JW, Wayson SM, Fedorova AV, Kayagaki N, Garg P, et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell. 2007;131:669–81.

    Article  PubMed  CAS  Google Scholar 

  61. Vince JE, Wong WW, Khan N, Feltham R, Chau D, Ahmed AU, et al. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell. 2007;131:682–93.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Robert Korneluk for the generous gift of cIAP2-null mice and Drs. Eric Lacasse and Paul Hamel for helpful discussion. We thank Min Ying Niu for expert technical assistance. This work was supported by grants from the Canadian Institutes of Health Research grant FRN 79304 and the Canadian Breast Cancer Foundation, Ontario to M.A.C.P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Christine Pratt.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 106 kb)

ESM 2

(PDF 51.4 kb)

ESM 3

(PDF 688 kb)

ESM 4

(PDF 68.7 kb)

ESM 5

(PDF 74.5 kb)

ESM 6

(PDF 71.4 kb)

ESM 7

(PDF 225 kb)

ESM 8

(PDF 37.3 kb)

ESM 9

(PDF 86.6 kb)

ESM 10

(PDF 31.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carr, D., Lau, R., Hnatykiw, A.D. et al. cIAP2 Is an Independent Signaling and Survival Factor during Mammary Lactational Involution and Tumorigenesis. J Mammary Gland Biol Neoplasia 23, 109–123 (2018). https://doi.org/10.1007/s10911-018-9398-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-018-9398-y

Keywords

Navigation