Skip to main content

Advertisement

Log in

Impact of Metabolic Hormones Secreted in Human Breast Milk on Nutritional Programming in Childhood Obesity

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Obesity is the most common metabolic disease whose prevalence is increasing worldwide. This condition is considered a serious public health problem due to associated comorbidities such as diabetes mellitus and hypertension. Perinatal morbidity related to obesity does not end with birth; this continues affecting the mother/infant binomial and could negatively impact on metabolism during early infant nutrition. Nutrition in early stages of growth may be essential in the development of obesity in adulthood, supporting the concept of “nutritional programming”. For this reason, breastfeeding may play an important role in this programming. Breast milk is the most recommended feeding for the newborn due to the provided benefits such as protection against obesity and diabetes. Health benefits are based on milk components such as bioactive molecules, specifically hormones involved in the regulation of food intake. Identification of these molecules has increased in recent years but its action has not been fully clarified. Hormones such as leptin, insulin, ghrelin, adiponectin, resistin, obestatin and insulin-like growth factor-1 copeptin, apelin, and nesfatin, among others, have been identified in the milk of normal-weight women and may influence the energy balance because they can activate orexigenic or anorexigenic pathways depending on energy requirements and body stores. It is important to emphasize that, although the number of biomolecules identified in milk involved in regulating food intake has increased considerably, there is a lack of studies aimed at elucidating the effect these hormones may have on metabolism and development of the newborn. Therefore, we present a state-of-the-art review regarding bioactive compounds such as hormones secreted in breast milk and their possible impact on nutritional programming in the infant, analyzing their functions in appetite regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

BMI:

body mass index

EGF:

epidermal growth factor

PDGF:

platelet-derived growth factor

IGF-1:

insulin-like growth factor-1

GLP-1:

glucagon-like peptide 1

WHO:

World Health Organization

UNICEF:

United Nations International Children’s Emergency Fund

ARC:

arcuate nucleus

AgRP:

Agouti-related protein

NYP:

neuropeptide Y

POMC:

pro-opiomelanocortin

CART:

cocaine- and amphetamine-regulated transcript

References

  1. Harrison T. Principios de Medicina Interna.15ª Ed. New York: McGraw-Hill; 2002.

    Google Scholar 

  2. Schwartz MW. Central nervous system regulation of food intake. Obesity. 2006;14(2):1–8.

    Article  Google Scholar 

  3. Patel MS, Srinivasan M. Metabolic programming due to alterations in nutrition in the immediate postnatal period. J Nutr. 2010;140(3):658–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ross MG, Desai M. Developmental programming of appetite/satiety. Ann Nutr Metab. 2014;64(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  5. Savino F, Liguori SA, Fissore MF, Oggero R. Breast milk hormones and their protective effect on obesity. Int J Pediatr Endocrinol. 2009;2009:327505.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vickers MH. Developmental programming and transgenerational transmission of obesity. Ann Nutr Metab. 2014;64(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  7. Arenz S, Rückerl R, Koletzko B, Von Kries R. Breast-feeding and childhood obesity—a systematic review. Int J Obes. 2004;28(10):1247–56.

    Article  CAS  Google Scholar 

  8. Plagemann A, Harder T. Breast feeding and the risk of obesity and related metabolic diseases in the child. Metab Syndr Relat Disord. 2005;3(3):222–32.

    Article  PubMed  Google Scholar 

  9. Fields D, George B, Williams M, Whitaker K, Allison D, Teague A, et al. Associations between human breast milk hormones and adipocytokines and infant growth and body composition in the first 6 months of life. Pediatr Obes. 2017; doi:10.1111/ijpo.12182.

  10. Alfaradhi MZ, Ozanne SE. Developmental programming in response to maternal overnutrition. Front Genet. 2011;2:1–13.

    Article  Google Scholar 

  11. Ley S, O’Connor D, Retnakaran R, Hamilton J, Sermer M, Zinman B. Impact of maternal metabolic abnormalities in pregnancy on human milk and subsequent infant metabolic development: methodology and design. BioMed Central Public Health. 2010;10(1):590.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wen X, Triche EW, Hogan JW, et al. Prenatal factors for childhood blood pressure mediated by intrauterine and/or childhood growth? Pediatrics. 2011;127:e713–21.

    Article  PubMed  PubMed Central  Google Scholar 

  13. McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE. Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Investig. 2009;119(2):323–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rolland-Cachera M, Deheeger M, Akrout M, Bellisle F. Influence of macronutrients on adiposity development: a follow up study of nutrition and growth from 10 months to 8 years of age. J Int Assoc Study Obes. 1995;19(8):573–8.

    CAS  Google Scholar 

  15. Dewey KG. Is breastfeeding protective against child obesity? J Hum Lact. 2003;19(1):9–18.

    Article  PubMed  Google Scholar 

  16. Haschke F, Steenhout P, Grathwohl D, Haschke-Becher E. Evaluation of growth and early infant feeding: a challenge for scientists, industry and regulatory bodies. World Rev Nutr Diet. 2013;6:33–8.

    Google Scholar 

  17. Harding J. The nutritional basis of the fetal origins of adult disease. Int J Epidemiol. 2001;30(1):15–23.

    Article  CAS  PubMed  Google Scholar 

  18. World Health Organization (WHO) (2015) http://www.who.int/nutrition/topics/infantfeeding_recommendation/en/Accessed 25 January 2017.

  19. Coupé B, Amarger V, Grit I, Benani A, Parnet P. Nutritional programming affects hypothalamic organization and early response to leptin. Endocrinology. 2010;151(2):702–13.

    Article  PubMed  Google Scholar 

  20. Stark R, Ashley SE, Andrews ZB. AMPK and the neuroendocrine regulation of appetite and energy expenditure. Mol Cell Endocrinol. 2013;366(2):215–23.

    Article  CAS  PubMed  Google Scholar 

  21. Glavas MM, Kirigiti MA, Xiao XQ, Enriori PJ, Fisher SK, Evans AE. Early overnutrition results in early-onset arcuate leptin resistance and increased sensitivity to high-fat diet. Endocrinology. 2010;151(4):1598–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gupta A, Srinivasan M, Thamadilok S, et al. Hypothalamic alterations in fetuses of high fat diet-fed obese female rats. J Endocrinol. 2009;200:293–300.

    Article  CAS  PubMed  Google Scholar 

  23. Johnstone L, Higuchi T. Food intake and leptin during pregnancy and lactation. Prog Brain Res. 2001;133:215–27.

    Article  CAS  PubMed  Google Scholar 

  24. Wells J. Maternal capital and the metabolic ghetto: an evolutionary perspective on the transgenerational basis of health inequalities. Am J Hum Biol. 2010;22:1–17.

    Article  PubMed  Google Scholar 

  25. Ballard J, Morrow A. Milk Composition: Nutrients and Bioactive Factors. Pediatr Clin N Am. 2013;60(1):49–74.

    Article  Google Scholar 

  26. Picciano M. Nutrient composition of human milk. Pediatr Clin N Am. 2001;48(1):53–67.

    Article  CAS  Google Scholar 

  27. Nommsen-Rivers L, Dolan L, Huang B. Timing of stage II lactogenesis is predicted by antenatal metabolic health in a cohort of primiparas. Breastfeed Med. 2012;7(1):43–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rodriguez-Palmero M, Koletzko B, Kunz C, Jensen R. Nutritional and biochemical properties of human milk: II. Lipids, micronutrients, and bioactive factors. Clin Perinatol. 1999;26(2):335–59.

    CAS  PubMed  Google Scholar 

  29. Henderson J, Hartmann P, Newnham J, Simmer K. Effect of preterm birth and antenatal corticosteroid treatment on lactogenesis II in women. Pediatrics. 2008;121(1):92–100.

    Article  Google Scholar 

  30. Skibiel A, Downing L, Orr T, Hood W. The evolution of the nutrient composition of mammalian milks. J Anim Ecol. 2013; doi:10.1111/1365-2656.12095.

  31. Prentice P, Ong K, Schoemaker M, van Tol E, Vervoort J, Hughes I. Breast milk nutrient content and infancy growth. Acta Paediatr. 2016;105(6):641–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jevitt C, Hernandez I, Groër M. Lactation complicated by overweight and obesity: Supporting the mother and newborn. J Midwifery Women’s Health. 2007;149(2):185–91.

    Google Scholar 

  33. Rasmussen K, Kjolhede C. Prepregnant overweight and obesity diminish the prolactin response to suckling in the first week postpartum. Pediatrics. 2004;113(5):e465–71.

    Article  PubMed  Google Scholar 

  34. Khodabakhshi A, Ghayour M, Rooki H, Vakili R, Hashemy S, Mirhafez S. Comparative measurement of ghrelin, leptin, adiponectin, EGF and IGF-1 in breast milk of mothers with overweight/obese and normal-weight infants. Eur J Clin Nutr. 2015;69(5):614–8.

    Article  CAS  PubMed  Google Scholar 

  35. Dewey K, Nommsen-Rivers L, Heinig M, Cohen R. Risk factors for suboptimal infant breastfeeding behavior, delayed onset of lactation, and excess neonatal weight loss. Pediatrics. 2003;112(3Pt 1):607–19.

    Article  PubMed  Google Scholar 

  36. Kronborg H, Vaeth M, Rasmussen K. Obesity and early cessation of breastfeeding in Denmark. Eur J Public Health. 2012;3(2):316–22.

    Google Scholar 

  37. Mäkelä J, Linderborg K, Niinikoski H, Baoru Y, Lagström H. Breast milk fatty acid composition differs between overweight and normal weight women: the STEPS Study. Eur J Nutr. 2013;52:727–35.

    Article  PubMed  Google Scholar 

  38. Castillo H, Santos I, Matijasevich A. Maternal pre-pregnancy BMI, gestational weight gain and breastfeeding. Eur J Clin Nutri. 2016;70(4):431–6.

    Article  CAS  Google Scholar 

  39. Casabiell X, Pineiro V, Tome M, Peino R, Dieguez C, Casanueva F. Presence of leptin in colostrum and/or breast milk from lactating mothers: a potential role in the regulation of neonatal food intake. J Clin Endocrinol Metab. 1997;82(12):4270–3.

  40. Brunner S, Schmid D, Zang K, Much D, Knoeferl B, Kratzsch J, et al. Breast milk leptin and adiponectin in relation to infant body composition up to 2 years. Pediatr Obes. 2015;10(1):67–73.

  41. Kon I, Shilina N, Gmoshinskaya M, Ivanushkina T. The study of breast milk IGF-1, leptin, ghrelin and adiponectin levels as possible reasons of high weight Ggain in breast-fed infants. Ann Nutr Metab. 2014;65(4):317–23.

    Article  CAS  PubMed  Google Scholar 

  42. Perry B, Wang Y. Appetite regulation and weight control: the role of gut hormone. Nutrit Diabetes. 2012;2(1):e26.

    Article  CAS  Google Scholar 

  43. Newburg D, Woo J, Morrow A. Characteristics and potential functions of human milk adiponectin. J Pediatr. 2010;156(2):41–6.

    Article  Google Scholar 

  44. Dündar N, Dündar B, Cesur G, Yilmaz N, Sütçu R, Ozgüner F. Ghrelin and adiponectin levels in colostrum, cord blood and maternal serum. Pediatr Int. 2010a;52(4):622–5.

  45. Whitmore T, Trengove N, Graham D, Hartmann P. Analysis of insulin in human breast milk in mothers with Type 1 and Type 2 diabetes mellitus. Int J Endocrinol. 2012;1:1–9.

    Article  Google Scholar 

  46. Fields D, Demerath E. Relationship of insulin, glucose, leptin, IL-6 and TNF-α in human breast milk with infant growth and body composition. Pediatr Obes. 2012;7(4):304–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ahuja S, Boylan M, Hart S, Shriver R, Spallholz J, Pence B. Glucose and insulin levels are increased in obese and overweight mothers’ breast-milk. Food Nutr Sci. 2011;2(3):201–6.

    Article  CAS  Google Scholar 

  48. Steculorum S, Collden G, Coupe B, Croizier S, Lockie S, Andrews Z. Neonatal ghrelin programs development of hypothalamic feeding circuits. J Clin Investig. 2015;125(2):846–58.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Whatmore AJ, Hall CM, Jones J, Westwood M, Clayton PE. Ghrelin concentrations in healthy children and adolescents. Clin Endocrinol. 2003;59(5):649–54.

    Article  CAS  Google Scholar 

  50. Aydin S. The presence of the peptides apelin, ghrelin and nesfatin-1 in the human breast milk, and the lowering of their levels in patients with gestational diabetes mellitus. Peptides. 2010;31(12):2236–40.

    Article  CAS  PubMed  Google Scholar 

  51. Grönberg M, Tsolakis A, Magnusson L, Janson E, Saras J. Distribution of obestatin and ghrelin in human tissues immunoreactive cells in the gastrointestinal tract, pancreas, and mammary glands. J Histochem Cytochem. 2008;56(9):793–801.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Granata R, Gallo D, Luque RM, Baragli A, Scarlatti F, Grande C. Obestatin regulates adipocyte function and protects against diet-induced insulin resistance and inflammation. Fed Am Soc Exp Biol J. 2012;26(8):3393–411.

    CAS  Google Scholar 

  53. Aydin S, Ozkan Y, Erman F, Gurates B, Kilic N, Colak R. Presence of obestatin in breast milk: relationship among obestatin, ghrelin, and leptin in lactating women. Nutrition. 2008;24(7–8):689–93.

    Article  CAS  PubMed  Google Scholar 

  54. Savino F, Lupica M, Benetti S, Petrucci E, Liguori S, Cordero Di Montezemolo L. Adiponectin in breast milk: relation to serum adiponectin concentration in lactating mothers and their infants. Acta Paediatr. 2012;101(10):1058–62.

    Article  CAS  PubMed  Google Scholar 

  55. Savino F, Benetti S, Lupica MM, Petrucci E, Palumeri E. Cordero di Montezemolo L. Ghrelin and obestatin in infants, lactating mothers and breast milk. Horm Res Paediatr. 2012;78(5–6):297–303.

    Article  CAS  PubMed  Google Scholar 

  56. Savino F, Sorrenti M, Benetti S, Lupica M, Liguori S, Oggero R. Resistin and leptin in breast milk and infants in early life. Early Hum Dev. 2012;88:779–82.

    Article  CAS  PubMed  Google Scholar 

  57. Jamaluddin M, Weakley S, Yao Q, Chen C. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol. 2012;165(3):622–32.

  58. Ilcol Y, Hizli Z, Eroz E. Resistin is present in human breast milk and it correlates with maternal hormonal status and serum level of C-reactive protein. Clin Chem Lab Med. 2008;46(1):118–24.

    Article  CAS  PubMed  Google Scholar 

  59. Kelly DP. Medicine. Irisin, light my fire. Science. 2012;336(6077):42–3.

    Article  PubMed  Google Scholar 

  60. Aydin S, Kuloglu T, Aydin S. Copeptin, adropin and irisin concentrations in breast milk and plasma of healthy women and those with gestational diabetes mellitus. Peptides. 2013;47:66–70.

    Article  CAS  PubMed  Google Scholar 

  61. Repaske D, Medlej R, Gültekin E, Krishnamani M, Halaby G, Findling J. Heterogeneity in clinical manifestation of autosomal dominant of neurohypophyseal diabetes insipidus caused by a mutation encoding Ala-1->Val in the signal peptide of the arginine vasopressin/neurophysin II/copeptin precursor. J Clin Endocrinol Metab. 1997;82(1):51–6.

    CAS  PubMed  Google Scholar 

  62. Morgenthaler N. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin Chem. 2006;52(1):112–9.

    Article  CAS  PubMed  Google Scholar 

  63. Khan S, Dhillon O, O’Brien R, Struck J, Quinn P, Morgenthaler N. C-terminal provasopressin (copeptin) as a novel and prognostic marker in acute myocardial infarction: Leicester acute myocardial infarction peptide (LAMP) study. Circulation. 2007;115(16):2103–10.

    Article  CAS  PubMed  Google Scholar 

  64. Habata Y, Fujii R, Hosoya M, Fukusumi S, Kawamata Y, Hinuma S. Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum BBA. Biochim Biophys Acta, Mol Cell Res. 1999;1452(1):25–35.

  65. Boucher J, Masri B, Daviaud D, Gesta S, Guigné C, Mazzucotelli A. Apelin, a Newly Identified Adipokine Up-Regulated by Insulin and Obesity. Endocrinology. 2006;146(4):1764–71.

    Article  Google Scholar 

  66. Castan-Laurell I, Vitkova M, Daviaud, Dray C, Kovaciková M, Kovacova Z, Hejnova J, Stich V, Valet P. Effect of hypocaloric die-induced weight loss in obese women on plasma apelin and adipose tissue expression of apelin and APJ. European Journal of Endocrinology. 2008;158(6):905–910.

  67. Dong J, Guan H, Jiang Z, Chen X. Nesfatin-1 influences the excitability of glucosensing Nneurons in the dorsal vagal complex and inhibits food intake. Public Library SciOne. 2014;9(6):1–9.

    CAS  Google Scholar 

  68. Schirra J, Burkhard G. The physiological role of GLP-1 in human: incretin, ileal brake or more? Regul Pept. 2005;128(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  69. Schueler J, Alexander B, Hart A, Austin K, Larson E. Presence and dynamics of leptin, GLP-1, and PYY in human breast milk at early postpartum. Obesity. 2013;21(7):1451–8.

  70. Elmlinger M, Hochhaus F, Loui A, Frommer K, Obladen M, Ranke K. Insulin-like growth factors and binding proteins in early milk from mothers of preterm and term infants. Horm Res Paediatr. 2007;68(3):124–31.

    Article  CAS  Google Scholar 

  71. Ohkawa N, Shoji H, Kitamura T, Suganuma H, Yoshikawa N, Suzuki M, Lee T, Hisata T, Shimiz T, Hisata K, Shimizu T. IGF-leptin and active ghrelin levels in very low birth weight infants during the first 8 weeks of life. Acta Paediatrica. 2010;99:37–41.

  72. Oddy W. Infant feeding and obesity risk in the child. Breastfeed Rev. 2012;20(2):7.

  73. Rose’Meyer R. A review of the serotonin transporter and prenatal cortisol in the development of autism spectrum disorders. Mol Autism. 2013;4(1):37.

  74. Entringer S. Impact of stress and stress physiology during pregnancy on child metabolic function and obesity risk. Curr Opin Clin Nutrit Metab Care. 2013;16:320–7.

    Article  Google Scholar 

  75. Hahn-Holbrook J, Le T, Chung A, Davis E, Glynn L. Cortisol in human milk predicts child BMI. Obesity. 2016;24(12):2471–4.

    Article  CAS  PubMed  Google Scholar 

  76. Bronsky J, Mitrova K, Karpisek M, Mazoch J, Durilova M, Fisarkova B, et al. Adiponectin, AFABP, and leptin in human breast milk during 12 months of lactation. J Pediatr Gastroenterol Nutr. 2011;52:474–7.

  77. Ley S, Hanley A, Sermer M, Zinman B, O’Connor D. Associations of prenatal metabolic abnormalities with insulin and adiponectin concentrations in human milk. Am J Clin Nutr. 2012;95:867–74.

  78. Larson-Meyer D, Schueler J, Kyle E, Austin K, Hart A, Alexander B. Do Lactation-Induced Changes in Ghrelin, Glucagon-Like Peptide-1, and Peptide YY Influence Appetite and Body Weight Regulation during the First Postpartum Year? J Obes. 2016;2016.

  79. Van der Voorn B, de Waard M, van Goudoever J, Rotteveel J, Heijboer A, Finken M. Breast-milk cortisol and cortisone concentrations follow the diurnal rhythm of maternal hypothalamus-pituitary-adrenal axis activity. J Nutr. 2016;146(11):2174–9.

    Article  PubMed  Google Scholar 

  80. Hamosh M. Digestion in the newborn. Clin Perinatol. 1996;23(2):191–209.

    CAS  PubMed  Google Scholar 

  81. Morán R, Naveiro R, Blanco F, Cabañeros A, Rodríguez F, Peral C. Prevalencia y duración de la lactancia materna. Influencia sobre el peso y la morbilidad. Nutr Hosp. 2009;24:213–7.

    Google Scholar 

  82. Rao S, Yajnik CS, Kanade A, Fall CH, Margetts BM, Jackson AA. Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth. Pune maternal nutrition study. J Nutr. 2001;131(4):1217–24.

    CAS  PubMed  Google Scholar 

  83. Li R, Jewell S, Grummer-Strawn L. Maternal obesity and breast-feeding practices. Am J Clin Nutr. 2003;77(4):931–6.

    CAS  PubMed  Google Scholar 

  84. Haschke F, Ziegler E, Grathwohl D. Fast Growth of Infants of Overweight Mothers: Can It Be Slowed Down? Ann Nutr Metab. 2014;64(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  85. Çatlı G, Olgac N, Dündar B. Adipokines in breast milk: an update. J Clin Res Pediatr Endocrinol. 2014;6(4):192–201.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Schuster S, Hechler C, Gebauer C, Kiess W, Kratzsch J. Leptin in maternal serum and breast milk: association with infants’ body weight gain in a longitudinal study over 6 months of lactation. Pediatr Res. 2011;70(6):633–7.

    Article  CAS  PubMed  Google Scholar 

  87. Smith-Kirwin S, O’Connor D, Johnston J, de Lancy E, Hassink S, Funanage V. Leptin expression in human mammary epithelial cells and breast milk. J Clin Endocrinol Metab. 1998;83(5):1810.

    Article  CAS  PubMed  Google Scholar 

  88. Bonnet M, Gourdou I, Leroux C, Chilliard Y, Djiane J. Leptin expression in the ovine mammary gland: putative sequential involvement of adipose, epithelial, and myoepithelial cells during pregnancy and lactation. J Anim Sci. 2002;80(3):723–8.

    Article  CAS  PubMed  Google Scholar 

  89. Miralles O, Sánchez J, Palou A, Picó C. A physiological role of breast milk leptin in body weight control in developing infants. Obesity. 2006;14(8):1371–7.

    Article  CAS  PubMed  Google Scholar 

  90. Casabiell X, Pineiro V, Tome M, Peino R, Dieguez C, Casanueva F. Presence of leptin in colostrum and/or breast milk from lactating mothers: a potential role in the regulation of neonatal food intake. J Clin Endocrinol Metab. 1997;82(12):4270–3.

    Article  CAS  PubMed  Google Scholar 

  91. Savino F, Fissore M, Grassino E, Nanni G, Oggero R, Silvestro L. Ghrelin, leptin and IGF-I levels in breast-fed and formula-fed infants in the first years of life. Acta Pediátr. 2005;94(5):531–7.

    Article  Google Scholar 

  92. López M, Tovar S, Vázquez M, Williams L, Diéguez C. Peripheral tissue-brain interactions in the regulation of food intake. Proc Nutr Soc. 2007;66(1):131–55.

    Article  PubMed  Google Scholar 

  93. Andreas N, Hyde M, Gale C, Parkinson J, Jeffries S, Holmes E. Effect of Maternal Body Mass Index on Hormones in Breast Milk: A Systematic Review. Public Library Sci One. 2014;9(12):1–25.

    Google Scholar 

  94. Woo J, Guerrero M, Guo F, Martin L, Davidson BS, Ortega H. Human milk adiponectin affects infant weight trajectory during the second year of life. J Pediatr Gastroenterol Nutr. 2012;54(4):532–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ozarda Y, Gunes Y, Tuncer G. The concentration of adiponectin in breast milk is related to maternal hormonal and inflammatory status during 6 months of lactation. Clin Chem Lab Med. 2012;50(5):911–7.

    Article  CAS  PubMed  Google Scholar 

  96. Jovanovic-Peterson L, Fuhrmann K, Hedden K, Walker L, Peterson C. Maternal milk and plasma glucose and insulin levels: studies in normal and diabetic subjects. J Am Coll Nutr. 1989;8(2):125–31.

    Article  CAS  PubMed  Google Scholar 

  97. Kirk S, Samuelsson A, Argenton M. Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. Public Library SciOne. 2009;4(6):e5870.

    Google Scholar 

  98. Jamaluddin M, Weakley S, Yao Q, Chen C. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol. 2012;165(3):622–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mora I, Espinoza A, López N, Acevo P, Romero FM, Montero P. Indicadores de riesgo cardiovascular, patrones de lactancia y estilo de vida de la madre durante el proceso de crecimiento y desarrollo fetal e infantil. Nutr Clín Diet Hosp. 2015;35(2):91–100.

    Google Scholar 

  100. Dobša L, Cullen K. Copeptin and its potential role in diagnosis and prognosis of various diseases. Biochem Med. 2013;23(2):172–90.

    Google Scholar 

  101. Saleem U, Khaleghi M, Morgenthaler N, Bergmann A, Struck J, Mosley T. Plasma carboxy-terminal provasopressin (copeptin): a novel marker of insulin resistance and metabolic syndrome. The J Clin Endocrinol Metab. 2009;94(7):2558–64.

    Article  CAS  PubMed  Google Scholar 

  102. Enhörning S, Struck J, Wirfält E, Hedblad B, Morgenthaler N, Melander O. Plasma copeptin, a unifying factor behind the metabolic syndrome. J Clin Endocrinol Metab. 2011;96(7):1065–72.

    Article  Google Scholar 

  103. Castan-Laurell I, Vitkova M. Daviaud, Dray C, Kovaciková M, Kovacova Z, Hejnova J, Stich V, Valet P. Effect of hypocaloric die-induced weight loss in obese women on plasma apelin and adipose tissue expression of apelin and APJ. Eur J Endocrinol. 2008;158(6):905–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Habata Y, Fujii R, Hosoya M, Fukusumi S, Kawamata Y, Hinuma S. Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum BBA. Biochim Biophys Acta Mol Cell Res. 1999;1452(1):25–35.

    Article  CAS  Google Scholar 

  105. Stanley T, Feldpausch M, Murphy C, Grinspoon S, Makimura H. Discordance of IGF-1 and GH Stimulation Testing for Altered GH Secretion in Obesity. Growth Hormon IGF Res. 2014;24(1):10–5.

    Article  CAS  Google Scholar 

  106. Ohkawa N, Shoji H, Kitamura T, Suganuma H, Yoshikawa N, Suzuki M. IGF-leptin and active ghrelin levels in very low birth weight infants during the first 8 weeks of life. Acta Paediatr. 2009;99:37–41.

    Google Scholar 

  107. Hinde K, Skibiel A, Foster A, Del Rosso L, Mendoza S, Capitanio J. Cortisol in mother's milk across lactation reflects maternal life history and predicts infant temperament. Behav Ecol. 2014;26:269–81.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Jwa S, Fujiwara T, Kondo N. Latent protective effects of breastfeeding on late childhood overweight and obesity: a nationwide prospective study. Obesity. 2014;22:1527–37.

    Article  PubMed  Google Scholar 

  109. Carter M, Dudley D, Nathanielsz P. Fetal cortisol is evaluated in maternal obesity (MO). Reprod Sci. 2011;18:139A.

    Google Scholar 

  110. Stuebe A. The risks of not breastfeeding for mothers and infants. Rev Obstetr Gynecol. 2009;2(4):222–31.

    Google Scholar 

  111. Bernstein RM, Hinde, K. Bioactive factors in milk across lactation: Maternal effects and influence on infant growth in rhesus macaques (Macaca mulatta). Am J Primatol. 2016; 78(8).

  112. Power ML, Schulkin J, Drought H, Milligan LA, Murtough KL, Bernstein RM. Patterns of milk macronutrients and bioactive molecules across lactation in a western lowland gorill a (Gorilla gorilla) and a Sumatran orangutan (Pongo abelii). Am J Primatol. 2016;9999:1–11.

    Google Scholar 

  113. Quinn EA, Geoff C. Ecological pressures and milk metabolic hormones of ethnic Tibetans living at different altitudes. Ann Hum Biol. 2017;44(1):34–45.

    Article  PubMed  Google Scholar 

  114. Fields DA, Camille RS, Gregory P. A narrative review of the associations between six bioactive components in breast milk and infant adiposity. Obesity. 2016: 1213–1221.

  115. Neu J. Gastrointestinal maturation and implications for infant feeding. Early Hum Dev. 2007;83(12):167–775.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Coordinación de Investigación Médica en Salud, IMSS, México (Grant #FIS/IMSS/PROT/PRIO/15/045.

The authors acknowledge Sharon Morey, Scientific Communications, for providing editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maricela Rodríguez-Cruz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badillo-Suárez, P.A., Rodríguez-Cruz, M. & Nieves-Morales, X. Impact of Metabolic Hormones Secreted in Human Breast Milk on Nutritional Programming in Childhood Obesity. J Mammary Gland Biol Neoplasia 22, 171–191 (2017). https://doi.org/10.1007/s10911-017-9382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-017-9382-y

Keywords

Navigation