Skip to main content
Log in

Enhanced Electrical Properties of La\(_{0.7}\)(Ca\(_{0.2}\)Sr\(_{0.1}\)) MnO\(_{3}\) Polycrystalline Composites with Ag Addition

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

La\(_{0.7}\)(Ca\(_{0.2}\)Sr\(_{0.1}\))MnO\(_{3}\):Ag\(_{x }\)(LCSMO:Ag\(_{x}\), x = 0, 0.1, 0.2 and 0.3, mol%) polycrystalline composites were prepared by a solid-state reaction method. With the increasing of Ag addition, the temperature coefficient of resistance (TCR) and the metal-to-insulator transition temperature (\(T_\mathrm{p}\)) reach the maximum values of 9.1 % K\(^{-1}\) and 258 K for LCSMO:Ag\(_{x}\) (x = 0.3) sample, which can be used as a candidate of bolometer or infrared detectors. The improvement of Mn\(^{4+}\) concentration and grain connectivity by Ag addition is responsible for the enhancement of \(T_\mathrm{p}\) and TCR values. The fitting curves of electrical resistivity show that the low temperature region (\(T < T_\mathrm{p}\)) is fitted with grain/domain boundary, electron–electron, and magnon scattering mechanisms, as well as the high temperature region (\(T > T_\mathrm{p}\)) is fitted with adiabatic small-polaron hopping mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. E. Dagotto, T. Hotta, A. Moreo, Phys. Rep. 344, 1 (2001)

    Article  ADS  Google Scholar 

  2. J.B. Goodenough, J. Appl. Phys. 81, 5330 (1997)

    Article  ADS  Google Scholar 

  3. A.-M. Haghiri-Gosnet, J.-P. Renard, J. Phys. D 36, R127 (2003)

    Article  ADS  Google Scholar 

  4. V.P.S. Awana, R. Tripathi, S. Balamurugan, H. Kishan, E. Takayama-muromachi, Solid State Commun. 140, 410 (2006)

    Article  ADS  Google Scholar 

  5. R. Yadav, A. Anshul, V. Shelke, J. Mater. Sci. 22, 1173 (2011)

    Google Scholar 

  6. J. Ma, Y. Cai, W. Wang, Q. Cui, M. Theingi, H. Zhang, Q. Chen, Ceram. Int. 40, 4963 (2014)

    Article  Google Scholar 

  7. X. Liu, Y.-Z. Yan, Q.-M. Chen, H. Zhang, M.-G. Cao, S.-C. Zhang, P.-X. Zhang, Appl. Surf. Sci. 283, 851 (2013)

    Article  ADS  Google Scholar 

  8. R.V. Helmolt, J. Wecker, B. Holzapfel, L. Schultz, K. Samwer, Phys. Rev. Lett. 71, 2331 (1993)

    Article  ADS  Google Scholar 

  9. V.P.S. Awana, R. Tripathi, N. Kumar, H. Kishan, G.L. Bhalla, R. Zeng, L.S.S. Chandra, V. Ganesan, H.U. Habermeier, J. Appl. Phys. 107, 7231 (2010)

    Google Scholar 

  10. C. Zener, Phys. Rev. 81, 440 (1951)

    Article  ADS  Google Scholar 

  11. A.J. Millis, Nature 392, 147 (1998)

    Article  ADS  Google Scholar 

  12. R. Tripathi, A. Dogra, A.K. Srivastava, V.P.S. Awana, R.K. Kotnala, G.L. Bhalla, H. Kishan, J. Phys. D 42, 025003 (2009)

    Article  ADS  Google Scholar 

  13. D. Liu, W. Liu, Ceram. Int. 38, 2579 (2012)

    Article  Google Scholar 

  14. R. Jha, S.K. Singh, A. Kumar, V.P.S. Awana, J. Magn, Magn. Mater. 324, 2849 (2012)

    Article  ADS  Google Scholar 

  15. C.S. Xiong, Y.F. Cui, Y.H. Xiong, H.L. Pi, X.C. Bao, Q.P. Huang, Y. Zeng, F.F. Wei, C.F. Zheng, J. Zhu, J. Solid State Chem. 181, 2123 (2008)

    Article  ADS  Google Scholar 

  16. C.S. Xiong, L.G. Wei, Y.H. Xiong, J. Zhang, D.G. Li, Q.P. Huang, Y.D. Zhu, X.S. Li, J. Phys. D Appl. Phys. 40, 1331 (2007)

    Article  ADS  Google Scholar 

  17. O.Y. Gorbenko, O.V. Melnikov, A.R. Kaul, A.M. Balagurov, S.N. Bushmeleva, L.I. Koroleva, R.V. Demin, Mater. Sci. Eng. B 116, 64 (2005)

    Article  Google Scholar 

  18. Y. Huang, K. Huang, F. Luo, L. He, Z. Wang, C. Liao, C. Yan, J. Solid State Chem. 174, 257 (2003)

    Article  ADS  Google Scholar 

  19. G. Venkataiah, JCa Huang, P.J. Magn, Magn. Mater. 322, 417 (2010)

    Article  ADS  Google Scholar 

  20. M. Nasri, M. Triki, E. Dhahri, M. Hussein, P. Lachkar, E.K. Hlil, Phys. B 408, 104 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank KMUST project (Grant No. KKZ3201351012), CSIET project (Grant No. 201310674027), NSFC project (Grant No. 61367008), and the Collaborative Innovation Center of Rare and Precious Metals Advanced Materials (Grant No. 14051706) for the financial support to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, X., Zhan, Y., Liu, X. et al. Enhanced Electrical Properties of La\(_{0.7}\)(Ca\(_{0.2}\)Sr\(_{0.1}\)) MnO\(_{3}\) Polycrystalline Composites with Ag Addition. J Low Temp Phys 180, 356–362 (2015). https://doi.org/10.1007/s10909-015-1319-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-015-1319-5

Keywords

Navigation