Skip to main content
Log in

Discretization and global optimization for mixed integer bilinear programming

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider global optimization of mixed-integer bilinear programs (MIBLP) using discretization-based mixed-integer linear programming (MILP) relaxations. We start from the widely used radix-based discretization formulation (called R-formulation in this paper), where the base R may be any natural number, but we do not require the discretization level to be a power of R. We prove the conditions under which R-formulation is locally sharp, and then propose an \(R^+\)-formulation that is always locally sharp. We also propose an H-formulation that allows multiple bases and prove that it is also always locally sharp. We develop a global optimization algorithm with adaptive discretization (GOAD) where the discretization level of each variable is determined according to the solution of previously solved MILP relaxations. The computational study shows the computational advantage of GOAD over general-purpose global solvers BARON and SCIP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Adams, W.P., Sherali, H.D.: Mixed-integer bilinear programming problems. Math. Program. 59(1–3), 279–305 (1993)

    Article  MathSciNet  Google Scholar 

  2. Bagajewicz, M.: A review of recent design procedures for water networks in refineries and process plants. Comp. Chem. Eng. 24(9–10), 2093–2113 (2000)

    Article  Google Scholar 

  3. Bussieck, M.R., Meeraus, A.: General algebraic modeling system (GAMS). In: Kallrath, J. (ed.) Modeling Languages in Mathematical Optimization, pp. 137–157. Springer, Boston (2004)

    Chapter  Google Scholar 

  4. Bussieck, M.R., Meeraus, A.: General algebraic modeling system (GAMS). In: Kallrath, J. (ed.) Modeling Languages in Mathematical Optimization, pp. 137–157. Springer, Boston (2004)

    Chapter  Google Scholar 

  5. Castro, P.M.: New MINLP formulation for the multiperiod pooling problem. AIChE J. 61(11), 3728–3738 (2015)

    Article  Google Scholar 

  6. Castro, P.M.: A piecewise relaxation for quadratically constrained problems based on a mixed-radix numerical system. Comp. Chem. Eng. 153, 107459 (2021)

    Article  Google Scholar 

  7. Castro, P.M., Liao, Q., Liang, Y.: Comparison of mixed-integer relaxations with linear and logarithmic partitioning schemes for quadratically constrained problems. Optim. Eng. (2021). https://doi.org/10.1007/s11081-021-09603-5

    Article  MATH  Google Scholar 

  8. Dolan, E., Moré, J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Article  MathSciNet  Google Scholar 

  9. Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Le Bodic, P., Maher, S.J., Matter, F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M.E., Schlösser, F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig, J.: The SCIP Optimization Suite 7.0. ZIB-Report 20-10, Zuse Institute Berlin (2020). http://nbn-resolving.de/urn:nbn:de:0297-zib-78023

  10. Gupte, A., Ahmed, S., Cheon, M.S., Dey, S.: Solving mixed integer bilinear problems using MILP formulations. SIAM J. Optim. 23(2), 721–744 (2013)

    Article  MathSciNet  Google Scholar 

  11. Gupte, A., Ahmed, S., Dey, S.S., Cheon, M.S.: Relaxations and discretizations for the pooling problem. J. Glob. Optim. 67(3), 631–669 (2017)

    Article  MathSciNet  Google Scholar 

  12. Gurobi Optimization, LLC: Gurobi Optimizer Reference Manual (2022). https://www.gurobi.com

  13. Hallale, N., Liu, F.: Refinery hydrogen management for clean fuels production. Adv. Environ. Res. 6(1), 81–98 (2001)

    Article  Google Scholar 

  14. Jezowski, J.: Review of water network design methods with literature annotations. Ind. Eng. Chem. Res. 49(10), 4475–4516 (2010)

    Article  Google Scholar 

  15. Jia, Z., Ierapetritou, M., Kelly, J.D.: Refinery short-term scheduling using continuous time formulation: crude-oil operations. Ind. Eng. Chem. Res. 42(13), 3085–3097 (2003)

    Article  Google Scholar 

  16. Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comp. Chem. Eng. 30(4), 650–673 (2006)

    Article  Google Scholar 

  17. Khor, S., Chachuat, B., Shah, N.: Optimization of water network synthesis for single-site and continuous processes: milestones, challenges, and future directions. Ind. Eng. Chem. Res. 53(25), 10257–10275 (2014)

    Article  Google Scholar 

  18. Kolodziej, S., Castro, P.M., Grossmann, I.E.: Global optimization of bilinear programs with a multiparametric disaggregation technique. J. Glob. Optim. 57(4), 1039–1063 (2013)

    Article  MathSciNet  Google Scholar 

  19. Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A discretization-based approach for the optimization of the multiperiod blend scheduling problem. Comp. Chem. Eng. 53, 122–142 (2013)

    Article  Google Scholar 

  20. Li, A.H., Zhang, J., Liu, Z.Y.: Design of distributed wastewater treatment networks of multiple contaminants with maximum inlet concentration constraints. J. Clean. Prod. 118, 170–178 (2016)

    Article  Google Scholar 

  21. Li, J., Li, W., Karimi, I., Srinivasan, R.: Improving the robustness and efficiency of crude scheduling algorithms. AIChE J. 53(10), 2659–2680 (2007)

    Article  Google Scholar 

  22. Li, J., Misener, R., Floudas, C.A.: Continuous-time modeling and global optimization approach for scheduling of crude oil operations. AIChE J. 58(1), 205–226 (2012)

    Article  Google Scholar 

  23. Lotero, I., Trespalacios, F., Grossmann, I.E., Papageorgiou, D.J., Cheon, M.S.: An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem. Comp. Chem. Eng. 87, 13–35 (2016)

    Article  Google Scholar 

  24. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    Article  Google Scholar 

  25. Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comp. Chem. Eng. 35(5), 876–892 (2011)

    Article  Google Scholar 

  26. Mouret, S., Grossmann, I.: Crude-oil operations scheduling. CyberInfrastructure for MINLP [www.minlp.org, a collaboration of Carnegie Mellon University and IBM Research] www.minlp.org/library/problem/index.php (2010)

  27. Nahapetyan, A.G.: Bilinear programming: applications in the supply chain management. In: Encyclopedia of Optimization, pp. 282–288. Springer US, Boston, MA (2009). https://doi.org/10.1007/978-0-387-74759-0_49

  28. Pham, V., Laird, C., El-Halwagi, M.: Convex hull discretization approach to the global optimization of pooling problems. Ind. Eng. Chem. Res. 48(4), 1973–1979 (2009)

    Article  Google Scholar 

  29. Sherali, H.D., Alameddine, A.: A new reformulation-linearization technique for bilinear programming problems. J. Glob. Optim. 2(4), 379–410 (1992)

    Article  MathSciNet  Google Scholar 

  30. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103(2), 225–249 (2005)

    Article  MathSciNet  Google Scholar 

  31. Teles, J.P., Castro, P.M., Matos, H.A.: Global optimization of water networks design using multiparametric disaggregation. Comp. Chem. Eng. 40, 132–147 (2012)

    Article  Google Scholar 

  32. Teles, J.P., Castro, P.M., Matos, H.A.: Multi-parametric disaggregation technique for global optimization of polynomial programming problems. J. Glob. Optim. 55, 227–251 (2013)

    Article  MathSciNet  Google Scholar 

  33. Vielma, J.: Mixed integer linear programming formulation techniques. SIAM Rev. 57, 3–57 (2015)

    Article  MathSciNet  Google Scholar 

  34. Vielma, J., Nemhauser, G.: Modeling disjunctive constraints with a logarithmic number of binary variables and constraints. Math. Program. 128, 49–72 (2011)

    Article  MathSciNet  Google Scholar 

  35. Wicaksono, D.S., Karimi, I.A.: Piecewise MILP under-and overestimators for global optimization of bilinear programs. AIChE J. 54(4), 991–1008 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Sciences and Engineering Research Council of Canada for the Discovery Grant RGPIN 418411-13 and the Collaborative Research and Development Grant CRDPJ 485798-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Parameters for the multiperiod pooling problems

See Table 7.

Table 7 Supply and demand parameters

Appendix B: The SB formulation for the multiperiod pooling problems

See Table 8 for the list of symbols in the SB formulation

Table 8 List of symbols for the SB formulation

The SB formulation

Objective:

$$\begin{aligned} \max .\;\;\sum _{t\in T}\left[ \sum _{i:(i,d)\in A}\sum _{d\in D}\beta _d f_{i,d,t}-\sum _{s\in S}\sum _{i:(s,i)\in A}\beta _s f_{s,i,t}-\sum _{(i,i')\in A}(\alpha _{i,i'}y_{l,i,i',t}+\beta _{i,i'}f_{i,i',t}) \right] .\end{aligned}$$

s.t. Bilinear terms:

$$\begin{aligned} f_{l,b,i,t}&=I_{l,b,t-1}x_{b,i,t},&\quad \forall (b,l)\in L, (b,i)\in A, t>1. \end{aligned}$$
(SB1)

Mass Balance:

$$\begin{aligned}&I_{l,s,t}=I_{l,s}^0/I_{l,s,t-1}+F^{IN}_{s,t}-\sum _{i:(s,i)\in A}f_{l,s,i,t},&\quad \forall (l,s)\in L, t\in T,x \end{aligned}$$
(SB1)
$$\begin{aligned}&I_{l,b,t}=I^0_{l,b}/I_{l,b,t-1}-\sum _{i:(b,i)\in A}f_{l,b,i,t} \end{aligned}$$
$$\begin{aligned}&\qquad \qquad +\sum _{i:(i,b)\in A}f_{l,i,b,t},&\quad \forall b\in B, (l,b)\in L, t\in T, \end{aligned}$$
(SB3)
$$\begin{aligned}&I_{l,d,t}=I^0_{l,d}/I_{l,d,t-1}-f^{OUT}_{l,d,t}+\sum _{i:(i,d)\in A}f_{l,i,d,t},&\quad \forall d\in D, t\in T. \end{aligned}$$
(SB4)

Quality Bounds:

$$\begin{aligned}&\sum _{l}I_{l,b,t-1}C^0_{q,l}\ge C^L_{q,d}\sum _{l}I_{l,b,t-1}-M(1-y_{b,d,t}),&\quad \forall (b,d)\in A, q\in Q, t>1, \end{aligned}$$
(SB5)
$$\begin{aligned}&\sum _{l}I_{l,b,t-1}C^0_{q,l}\le C^U_{q,d}\sum _{l}I_{l,b,t-1}+M(1-y_{b,d,t}),&\quad \forall (b,d)\in A, q\in Q, t>1,\end{aligned}$$
(SB5)
$$\begin{aligned}&C^0_{q,s}y_{s,d,t}\ge C^L_{q,d}y_{s,d,t},&\quad \forall (s,d)\in A, t\in T,\end{aligned}$$
(SB7)
$$\begin{aligned}&C^0_{q,s}y_{s,d,t}\le C^U_{q,d}y_{s,d,t},&\quad \forall (s,d)\in A, t\in T,\end{aligned}$$
(SB8)
$$\begin{aligned}&C^0_{q,b}y_{b,d,t}\ge C^L_{q,d}y_{b,d,t},&\quad \forall (b,d)\in A, t=1.\end{aligned}$$
(SB9)
$$\begin{aligned}&C^0_{q,b}y_{b,d,t}\le C^U_{q,d}y_{b,d,t},&\quad \forall (b,d)\in A, t=1. \end{aligned}$$
(SB10)

Tank Capacity:

$$\begin{aligned} I^L_i\le I_{i,t}&\le I^U_i,&\quad \forall i\in N, t\in T. \end{aligned}$$
(SB11)

Pipe Capacity:

$$\begin{aligned} F^L_{i,i',t}y_{i,i',t}&\le f_{i,i',t}\le F^U_{i,i',t}y_{i,i',t},&\quad \forall (i,i')\in A, t\in T. \end{aligned}$$
(SB12)

Individual Flow Constraints:

$$\begin{aligned} \sum _{l}I_{l,b,t}&=I_{b,t},&\quad \forall (b,l)\in L, t\in T, \end{aligned}$$
(SB13)
$$\begin{aligned} \sum _{l}f^{out}_{l,d,t}&=F^{OUT}_{d,t},&\quad \forall d\in D, t\in T. \end{aligned}$$
(SB14)

Operation Mode:

$$\begin{aligned}&y_{i,b,t}+y_{b,i',t}\le 1,&\quad \forall (i,b),(b,i')\in A, t\in T. \end{aligned}$$
(SB15)

Variable Bounds:

$$\begin{aligned}&f_{i,i',t}\ge 0,&\quad \forall (i,i')\in A, t\in T, \end{aligned}$$
(SB16)
$$\begin{aligned}&0\le x_{b,i,t}\le 1,&\quad \forall (b,i)\in A, t\in T,\end{aligned}$$
(SB17)
$$\begin{aligned}&y_{i,i',t}\in \{0,1\},&\quad \forall (i,i')\in A, t\in T. \end{aligned}$$
(SB18)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, X., Li, X. Discretization and global optimization for mixed integer bilinear programming. J Glob Optim 84, 843–867 (2022). https://doi.org/10.1007/s10898-022-01179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-022-01179-3

Keywords

Navigation