Skip to main content
Log in

Highly Efficient Colorimetric Sensor for Selective and Sensitive Detection of Arsenite Ion (III) in Aqueous Medium

  • FLUORESCENCE NEWS ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Baglan M, Atılgan S (2013) Selective and sensitive turn-on fluorescent sensing of arsenite based on cysteine fused tetraphenylethene with AIE characteristics in aqueous media. Chem Commun 49:5325–5327

    Article  CAS  Google Scholar 

  2. Ezeh VC, Harrop TC (2012) A sensitive and selective fluorescence sensor for the detection of arsenic (III) in organic media. Inorg Chem 51:1213–1215

    Article  CAS  Google Scholar 

  3. Ezeh VC, Harrop TC (2013) Synthesis and properties of arsenic (III)-reactive Coumarin-appended Benzothiazolines: a new approach for inorganic arsenic detection. Inorg Chem 52:2323–2334

    Article  CAS  Google Scholar 

  4. Wang D, Zhao Y, Jin H, Zhuang J, Zhang W, Wang S (2013) Synthesis of au-decorated tripod-shaped Te hybrids for applications in the ultrasensitive detection of arsenic. Appl Mater Interfaces 5:5733–5740

    Article  CAS  Google Scholar 

  5. Gumpu MB, Mani GK, Nesakumar N, Kulandaisamy AJ, Babu KJ, Rayappan JBB (2016) Electrocatalyticnanocauliflower structured fluorine doped CdO thin film as a potential arsenic sensor. Sensors Actuators B Chem 234:426–434

    Article  CAS  Google Scholar 

  6. Saha J, Roy AD, Dey D, Nath J, Bhattacharjee D, Hussain SA (2016) Development of arsenic(v) sensor based on fluorescence resonance energy transfer. Sensors Actuators B Chem 16:31725–31727

    Google Scholar 

  7. Kumar S, Bhanjana G, Dilbaghi N, Kumar R, Umar A (2016) Fabrication and characterization of highly sensitive and selective arsenic sensor based on ultra-thin graphene oxide Nanosheets. Sens ActuatorsB 227:29–34

    Article  CAS  Google Scholar 

  8. Shrivas K, Shankar R, Dewangan K (2015) Gold nanoparticles as a localized surface Plasmon resonance based chemical sensor for on-site colorimetric detection of arsenic in water samples. Sens ActuatorsB 220:1376–1383

    Article  CAS  Google Scholar 

  9. Choudhury S, Ghosh S, Mukherjee S, Gupta P, Bhattacharya S, Adhikary A, Chattopadhyay P (2016) Pomegranate protects against arsenic-induced p53-dependent ROS-mediated inflammation and apoptosis in liver cells. Nutr Biochem 28:25–40

    Article  Google Scholar 

  10. Farooq MA, Islam F, Ali B, Najeeb U, Mao B, Gill RA, Yan G, Siddique KHM, Zhou W (2016) Arsenic toxicity in plants: cellular and molecular mechanisms of its transport and metabolism. Environ Exp Bot 132:42–52

    Article  CAS  Google Scholar 

  11. Ensafi A, Kazemifard N, Rezaei B (2016) A simple and sensitive fluorimetricaptasensor for the ultrasensitive detection of arsenic (III) based on cysteamine stabilized CdTe/ZnS quantum dots aggregation. Biosens Bioelectron 77:499–504

    Article  CAS  Google Scholar 

  12. Presti M, Sayed S, Manez R, Costero A, Gil S, Parra M, Sancenon F (2016) SelectivechromoFluorogenic detection of trivalent cations in aqueous environments using a dehydration reaction. New J Chem 40:9042–9045

    Article  Google Scholar 

  13. Xu Y, Tokar EJ, Sun Y, Waalkes MP (2012) Arsenic-transformed malignant prostate epithelia can convert noncontiguous Normal stem cells into an oncogenic phenotype. Environ Health Perspect 120:865–871

    Article  CAS  Google Scholar 

  14. Chakraborti D, Mukherjee SC, Pati S, Sengupta MK, Rahman MM, Chowdhury UK, Lodh D, Chanda CR, Chakraborti AK, Basu GK (2003) Arsenic groundwater contamination in middle ganga plain, Bihar, India: a future danger. Environ Health Perspect 111:1194–1201

    Article  CAS  Google Scholar 

  15. Kim M, Um H, Bang S, Lee S, Oh S, Han J, Kim K, Min J, Kim Y (2009) Arsenic removed from Vietnamese groundwater using the arsenic – binding DNA aptamer. Environ Sci Technol 43:9335–9340

    Article  CAS  Google Scholar 

  16. Hsu SCN, Lin TTY, Chen H, Sichuan C, Kao P, Chen MH (2011) Potassium-encapsulated arsenic-dithiolato compounds: synthesis, structural calculation, and biological relevance. Kaohsiung J Med Sci 27:424–429

    Article  CAS  Google Scholar 

  17. Fu N, Su D, Cort JR, Chen B, Xiong Y, Qian W, Konopka AE, Bigelow DJ, Squier TC (2013) Synthesis and application of an environmentally insensitive Cy3-based arsenical fluorescent probe to identify adaptive microbial responses involving proximal dithiol oxidation. Am Chem Soc 135:3567–3575

    Article  CAS  Google Scholar 

  18. Islam ASM, Alam R, Katarkar A, Chaudhuri K, Ali M (2015) Di-oxime based selective fluorescent probe for arsenate and Arsenite ions in a purely aqueous medium with living cell imaging applications and H-bonding induced microstructure formation. Analyst. 140:2979–2983

    Article  CAS  Google Scholar 

  19. Yadav N, Singh AK (2013) Dual anion colorimetric and Fluorometric sensing of Arsenite and cyanide ions. RSC Adv 00:1–3

    Google Scholar 

  20. Dolai M, Alam R, Katarkar A, Ali M (2016) Oxime based selective fluorescent sensor for arsenate ion in a greener way with bio-imaging application. Anal Sci 32:1295–1300

    Article  CAS  Google Scholar 

  21. Nath BK, Chaliha C, Kalita E, Kalita MC (2016) Synthesis and characterization of ZnO: CeO2: Nanocellulose: PANI bionanocomposite bimodal agent for arsenic adsorption and antibacterial action. Carbohydr Polym. 148:397–405

  22. Rajkumar M, Thiagarajan S, Chen S (2011) Electrochemical detection of arsenic in various water samples. Int J Electrochem Sci 6:3164–3177

    CAS  Google Scholar 

  23. Moghimi N, Mohapatra M, Leung KT (2015) Bimetallic nanoparticles for arsenic detection. Anal Chem 87:5546–5552

    Article  CAS  Google Scholar 

  24. Yang M, Guo Z, Li L, Huang Y, Zhou Q, Lhen X, Huang X (2016) Electrochemical determination of arsenic(III) with ultra-high anti-interference performance using au–cu bimetallic nanoparticles. Sensors Actuators B Chem 231:70–78

    Article  CAS  Google Scholar 

  25. Moussawi RN, Patra D (2016) Modification of nanostructured ZnO surfaces with curcumin: fluorescence-based sensing for arsenic and improving arsenic removal by ZnO. RSC Adv 6:17256–17268

    Article  CAS  Google Scholar 

  26. Sirawatcharin S, Saithongdee A, Chaicham A, Tomapatanaget B, Imyim A, Praphalraksit N (2014) Naked eye colorimetric detection of arsenic(III) using Difluoroboron- curcumin in aqueous and resin bead support systems. Anal Sci 30:1129–1134

    Article  CAS  Google Scholar 

  27. Jung HS, Verwilst P, Kim WY, Kim JS (2016) Fluorescent and colorimetric sensors for the detection of humidity or water content. Chem Soc Rev 45:1242–1256

    Article  CAS  Google Scholar 

  28. Ermolenko Y, Kalyagin D, Alekseer I, Bychkor E, Koldnikov V, Melnikova N, Murin I, Marzina Y, Vlasov Y (2015) New membrane material for thallium (I)-selective sensors based on arsenic sulfide glasses. Sensors Actuators B Chem 2:940–944

    Article  Google Scholar 

  29. Mohammadia A, Dehghana Z, Rassab M, Chaibakhsh N (2016) Colorimetric probes based on bioactive organic dyes for selective sensing of cyanide and fluoride ions. Sensors Actuators B Chem 230:388–397

    Article  Google Scholar 

  30. Lohar S, Pal S, Sen B, Mukherjee M, Banerjee S, Chattopadhyay P (2014) Selective and sensitive turn-on Chemosensor for Arsenite ion at the ppb level in aqueous media applicable in cell staining. Anal Chem 86:11357–11361

    Article  CAS  Google Scholar 

  31. Meharg AA, Rahman MDM (2003) Arsenic contamination of Bangladesh Paddy field soils: implications for Rice contribution to arsenic consumption. Environ Sci Technol 37:229–234

    CAS  PubMed  Google Scholar 

  32. Tiwari K, Mishra M, Singh VP (2014) 8(E)-4-[{2-(2, 4-dinitrophenyl) Hydrazono} Benzene-1, 3-diol] as a Solvatochromic Schiff base and chromomeric signaling of water content by its deprotonated form in acetonitrile. RSC Adv 4:27556–27564

    Article  CAS  Google Scholar 

  33. Ponnuvel K, Padmini V, Sribalan R (2016) A new Tetrazole based turn-on fluorescence Chemosensor for Zn2+ ions and its application in bioimaging. Sensors Actuators B Chem 222:605–611

    Article  CAS  Google Scholar 

  34. Ellairajaa S, Shenbagavallia K, Ponmariappan S, Vasanthaa VS (2017) A green and facile approach for synthesizing imine to develop optical biosensor for wide range detection of bilirubin in human biofluids. Biosens Bioelectron 91:82–88

    Article  Google Scholar 

  35. Frisch JM, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, OBurant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross IB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision A.02, Gaussian, Inc Wallingford CT

Download references

Acknowledgements

Authors thank DST and UGC, New Delhi for financial support. DST-IRHPA, FIST, BRNS and PURSE for instrument facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vediappen Padmini.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 5566 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepa, A., Padmini, V. Highly Efficient Colorimetric Sensor for Selective and Sensitive Detection of Arsenite Ion (III) in Aqueous Medium. J Fluoresc 29, 813–818 (2019). https://doi.org/10.1007/s10895-019-02401-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-019-02401-4

Keywords

Navigation