Skip to main content
Log in

Aldehyde Substituted Phthalocyanines: Synthesis, Characterization and Investigation of Photophysical and Photochemical Properties

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The new free and nickel phthalocyanine derivatives, tetrakis [(2-formylphenoxy)-phthalocyanine (4), tetrakis [(2-formylphenoxy)-phthalocyaninato]nickel(II) (5) have been synthesized via de-protection of tetra acetal-substituted phthalocyanines in acetic acid/FeCl3 system. The starting phthalocyanines, tetrakis [(2-(1,3-dioxolan-2-yl)phenoxy)-phthalocyanine (2) and tetrakis [(2-(1,3-dioxolan-2-yl)phenoxy)-phthalocyaninato]nickel (3), were prepared by the tetramerization of 4-(2-(1,3-dioxolan-2-yl) phenoxy) phthalonitrile (1). The new compounds have been characterized by the combination of FT-IR, 1H NMR, UV–Vis, Mass spectra and elemental analysis. Compound 1 crystallizes in the Orthorhombic, space group Pbca with a = 9.2542 (4) Å, b = 13.3299 (5) Å, c = 23.2333 (11) Å, and Z = 8. Compound 1 is built up from two planar groups (phthalonitrile and phenoxy), with a dihedral angle of 69.693(36)° between them and non-planar dioxolane group. We report a combined experimental and theoretical study on molecule 1, as well. Geometric, spectroscopic and electronic properties of compound 1 has been calculated using B3LYP method and 6–311++G(dp) basis set. Fluorescence spectroscopy was applied to record the photoluminescence spectra of the prepared phthalocyanines and the photophysical and photochemical properties were examined in DMSO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ishii K, Kobayashi N, In: Kadish KM, Smith KM, Guilard R (Eds.) (2003) The Porphyrin handbook, Academic Press/Elsevier, New Yor 16:1–40.

  2. McKeown NB (1998) Phthalocyanine materials synthesis, structure and function. Cambridge University Press, Cambridge

  3. Torre G, Vazquez P, Agullo-Lopez F, Torres T (1998) Phthalocyanines and related compounds: organic targets for nonlinear optical applications. J Mater Chem 8:1671–1683

    Article  Google Scholar 

  4. Bonnett R (2000) Chemical aspects of photodynamic therapy. Gordon and Breach Science, Canada

    Google Scholar 

  5. Struve WS (1999) Primary process of Photocarrier generation in Y-form Titanyl phthalocyanine studied by electric-field-modulated picosecond time-resolved fluorescence spectroscopy. J Phys Chem B 103:6835–6838

    Google Scholar 

  6. Radhakrishnann S, Deshpande S.D (2002) Conducting polymers functionalized with phthalocyanine as nitrogen dioxide sensors. Sensors 2:185–194.

  7. Hanack M, Lang M (1994) Conducting stacked metallophthalocyanines and related compounds. Adv Mater 6:819–833

    Article  CAS  Google Scholar 

  8. Agar E, Sasmaz S, Akdemir N, Keskin, I (1997) Synthesis and characterization of novel phthalocyanines containing four 15-membered oxadithiadiaza mixed-donor macrocycles. J Chem Soc Dalton Trans 12:2087–2090

  9. Leclaire J, Dagiral R, Fery-Forgues S, Coppel Y, Donnadieu B, Caminade A, Majoral J (2005) Octasubstituted metal-free phthalocyanine as core of phosphorus dendrimers: a probe for the properties of the internal structure. J. Am. Chem. Soc, 127:15762–15770.

  10. Fouriaux S, Armand F, Araspin O, Ruaudel-Teixier A, Maya E. M, Vazquez P, Torres T (1996) Effect of the metal on the organization of tetraamidometallophthalocyanines in langmuir–Blodgett films. J Phys Chem 100:16984–16988.

  11. Liu.S G, Liu YQ, Xu Y, Zhu DB, Yu AC, Zhao XS (1998) Synthesis, Langmuir–Blodgett film, and second-order nonlinear optical property of a novel asymmetrically substituted metal-free phthalocyanine. Langmuir 14:690–695

    Article  Google Scholar 

  12. Chen J, Chen N, Huang J, Wang J, Huang M (2006) Derivatizable phthalocyanine with single carboxyl group: synthesis and purification. Inorg Chem Commun 9:313–315

    Article  CAS  Google Scholar 

  13. Akkurt B, Hamuryudan E (2008) Enhancement of solubility via esterification: synthesis and characterization of octakis (ester)-substituted phthalocyanines. Dyes Pigments 79:153–158

    Article  CAS  Google Scholar 

  14. Sen P, Yildiz SZ, Tuna M, Canlica M (2014) Preparation of aldehyde substituted phthalocyanines with improved yield and their use for Schiff base metal complex formation. J Organomet Chem 769:38–45

    Article  CAS  Google Scholar 

  15. Gümrükçü G, Karaoğlan GK, Erdoğmuş A, Gül A, Avcıata U (2012) A novel phthalocyanine conjugated with four Salicylideneimino complexes; photophysics and fluorescence quenching studies. Dyes Pigments 95:280–289

    Article  Google Scholar 

  16. Gümrükçü G, Karaoğlan GK, Erdoğmuş A, Avcıata U, Gül A (2014) Photophysical, photochemical and BQ quenching properties of zinc phthalocyanines with fused or interrupted extended conjugation. Journal of Chemistry 2014:1–11

    Article  Google Scholar 

  17. Öztürk C, Erdoğmuş A, Durmuş M, Uğur AL, Kılıçarslan F. A, Erden I (2012) Highly soluble 3,4-(dimetoxyphenylthio) substituted phthalocyanines: synthesis, photophysical and photochemical studies. Spectrochim Acta A Mol Biomol Spectrosc, 86: 423–431.

  18. Perrin DD, Armarego WLF, Perrin DR (1985) Purification of laboratory chemicals, second edn. Pergamon Press, New York

    Google Scholar 

  19. Sen P, Yildiz SZ, Atalay Y, Dege N, Demirtas G (2014) The synthesis, characterization, crystal structure and theoretical calculations of a new meso-BOBIPY substituted phthalonitrile. J Lumin 149:297–305

    Article  CAS  Google Scholar 

  20. Stoe & Cie, X-AREA (Version 1.18) and X-RED32 (Version 1.04) (2002) Stoe & Cie, Darmstadt, Germany

  21. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  CAS  PubMed  Google Scholar 

  22. Farrugia LJ (1999) WinGX suite for small-molecule single-crystal crystallography. J. Appl. Cryst. 32:837–838

    Article  CAS  Google Scholar 

  23. Farrugia L (2012) WinGX and ORTEP for windows: an update. J Appl Cryst 45:849–854

    Article  CAS  Google Scholar 

  24. Burnett MN, Johnson CK (1996) ORTEP-III, Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA

    Google Scholar 

  25. Spek AL (2009) Structure validation in chemical crystallography. Acta Cryst D65:148–155

    Google Scholar 

  26. Becke AD (1993) Density-functional thermochemistry. III The role of exact exchange J Chem Phys 98:5648–5654

    CAS  Google Scholar 

  27. Frisch M J, Trucks G W, Schlegel HB, Scuseria GE, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, et al., Gaussian, Inc., Wallingford CT, (2009). Gaussian 09, Revision A.1

  28. Dennington R, Keith T, Millam J (2009) Semichem Inc. Shawnee Mission, KS, Gauss View Version 5

    Google Scholar 

  29. Frey-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products J. Chem Educ 76:1260–1264

    Article  Google Scholar 

  30. Ogunsipe A, Chen JY, Nyokong T (2004) Photophysical and photochemical studies of zinc(II) phthalocyanine derivatives effects of substituents and solvents. New J Chem 28:822–827

    Article  CAS  Google Scholar 

  31. Erdoğmuş A, Nyokong T (2010) Synthesis of zinc phthalocyanine derivatives with improved photophysicochemical properties in aqueous media. J Mol Struct 977:26–38

    Article  Google Scholar 

  32. Erdoğmuş A, Nyokong T (2010) Novel, soluble, FluXoro functional substituted zinc phthalocyanines; synthesis, characterization and photophysicochemical properties. Dyes Pigments 86:174–181

    Article  Google Scholar 

  33. Erdoğmuş A, Nyokong T (2009) Synthesis, photophysical and photochemical properties of novel soluble tetra-4-(thiophen-3yl)-phenoxy-phthalocyaninato zinc(II) and Ti(IV)O complexes. Inorg Chim Acta 362:4875–4883

    Article  Google Scholar 

  34. Erdoğmuş A, Nyokong T (2009) New soluble methylendioxy-phenoxy-substituted zinc phthalocyanine derivatives: synthesis, photophysical and photochemical studies. Polyhedron 28:2855–2862

    Article  Google Scholar 

  35. Erdoğmuş A, Ogunsipe A, Nyokong T (2009) Synthesis, photophysics and photochemistry of novel tetra(quinoxalinyl)phthalocyaninato zinc(II) complexes. J Photochem Photobiol A Chem 205:12–18

    Article  Google Scholar 

  36. Kuznetsova N, Gretsova N, Kalmykova E, Makarova E, Dashkevich S, Negrimovskii V, Kaliya O, Luk’yanets E (2000) Relationship between the photochemicl properties and structure of pophyris and related compounds. J Russ Gen Chem 70:133–138

    CAS  Google Scholar 

  37. Sen P, Dumludag F, Salih B, Ozkaya AR, Bekaroglu O (2011) Synthesis and electrochemical, electrochromic and electrical properties of novel s-triazine bridged trinuclear Zn(II), Cu(II) and Lu(III) and a tris double-decker Lu(III) phthalocyanines. Synth Met 161:1245–1254

    Article  CAS  Google Scholar 

  38. Arıcan D, Arıcı M, Uğur AL, Erdoğmuş A, Koca A (2013) Effects of peripheral and nonperipheral substitution to the spectroscopic, electrochemical and spectroelectrochemical properties of metallophthalocyanines. Electrochim Acta 106:541–555

    Article  Google Scholar 

  39. Ogunsipe A, Maree D, Nyokong T (2003) Solvent effects on the photochemical and fluorescence properties of zinc phthalocyanine derivatives. J Mol Struct 650:131–140

    Article  CAS  Google Scholar 

  40. Stillman MJ, Nyokong T, Leznoff CC (1989) A.B.P. Lever (Eds.), Phthalocyanines: Properties and Applications, vol. 1, VCH, New York.

  41. Yildiz SZ, Kucukislamoglu M, Tuna M (2009) Synthesis and characterization of novel flavonoid-substituted phthalocyanines using (±)naringenin. J Organomet Chem 694:4152–4161

    Article  CAS  Google Scholar 

  42. Tau P, and Nyokong T (2006) Synthesis, electrochemical and photophysical properties of phthalocyaninato oxotitanium(IV) complexes tetra-substituted at the α and β positions with arylthio groups. J Chem Soc Dalton Trans 37:4482–4490

  43. Schutte WJ, Rehbach MS, Sluyters JH (1993) Aggregation of an octasubstituted phthalocyanine in dodecane solution. J Phys Chem 97:6069–6073

    Article  CAS  Google Scholar 

  44. Yang YC, Ward JR, Seiders RP (1985) Dimerization of cobalt(II) Tetrasulfonated phthalocyanine in water and aqueous alcoholic solutions. Inorg Chem 24:1765–1769

    Article  CAS  Google Scholar 

  45. Escosura A, Martinez-Diaz MV, Thordarson P, Rowan A.E, Nolte R.J.M, Torres T (2003) Donor-acceptor phthalocyanine Nanoaggregates. J Am Chem Soc, 125: 12300–12308.

  46. Martinez-Diaz MV, Rodriguez-Morgade MS, Feiters MC, Kan PJM, Nolte RJM, Stoddart JF, Torres T (2000) Supramolecular phthalocyanine dimers based on the secondary Dialkylammonium Cation/ Dibenzo-24-crown-8 recognition motif. Org Lett 2:1057–1060

    Article  CAS  PubMed  Google Scholar 

  47. Yang ZY, Gan LH, Lei SB, Wan LJ, Wang C, Jiang J.Z (2005) Self-assembly of PcOC8 and its sandwich lanthanide complex Pr(PcOC8)2 with Oligo(Phenylene-ethynylene) molecules. J Phys Chem B, 109:19859–19865.

  48. Tran-Thi T-H (1997) Assemblies of phthalocyanines with porphyrins and porphyrazines: ground and excited state optical properties. Coord Chem Rev 160:53–91

    Article  CAS  Google Scholar 

  49. Palewska K, Sworakowski J, Lipinski J (2012) Molecular aggregation in soluble phthalocyanines – chemical interactions vs. π-stacking. Opt Mater 34:1717–1724

    Article  CAS  Google Scholar 

  50. Sessler JL, Jayawickramarajah J, Gouloumis A, Dan Pantos G, Torres T, Guldi DM (2006) Guanosine and fullerene derived de-aggregation of a new phthalocyanine-linked cytidine derivative. Tetrahedron 62:2123–2131

    Article  CAS  Google Scholar 

  51. Adebayo AI, Nyokong T (2009) Synthesis, spectroscopic and electrochemical properties of manganese, nickel and iron octakis-(2-diethylaminoethanethiol)-phthalocyanine. Polyhedron 28:2831

    Article  CAS  Google Scholar 

  52. Li X-Y, Ng DKP (2001) Synthesis and spectroscopic properties of the first phthalocyanine–nucleobase conjugates. Tetrahedron Lett 42:305–309

    Article  CAS  Google Scholar 

  53. Akbal T, Akdemir N, Ozil M, Agar E, Erdonmez A (2005) 4,5-bis(3-methoxy­phenylsulfanyl)­phthalo­nitrile. Acta Cryst E61:1121–1122

    Google Scholar 

  54. Dinçer M, Agar A, Akdemir N, Ağar E, Özdemir N (2004) 4- (Benzyloxy)phthalonitrile. Acta Crystallogr E 60(79–80):34

    Google Scholar 

  55. Tereci H, Askeroğlu I, Akdemir N, Uçar I, Büyükgüngör O (2012) Combined experimental and theoretical approaches to the molecular structure. Spectrochim Acta A Mol Biomol Spectrosc 96:569–577

    Article  CAS  PubMed  Google Scholar 

  56. İskeleli NO (2007) 4-(m-Tolyloxy)phthalonitrile. Acta Crystallogr E 63(997–998):37

    Google Scholar 

  57. Mei C, Lia K, Zhang P (2008) Poly[[tetra­aqua­bis­(1H-imidazole-κN3)bis­­[2-(oxalo­amino)benzoato(3–)]dicopper(II)barium(II)] dihydrate]. Acta Cryst E 64:356–356

    Article  Google Scholar 

  58. Işık Ş, Köysal Y (2006) 4-(4-Heptyloxyphenoxy)phthalonitrile. Acta Crystallogr E 62:671–672

    Google Scholar 

  59. Köysal Y, Işık Ş, Akdemir N, Ağar E, McKee V (2003) 4-(8- Quinolinoxy)phthalonitrile. Acta Crystallogr E 59:1423–1424

    Article  Google Scholar 

  60. Tanak, H., Köysal, Y., Işık, Ş.,Yaman, H., Ahsen, V. (2011). Bull. Korean Chem. Soc., 32, 2: 673–680.

  61. Öner N, Tamer Ö, Avcı D, Atalay Y (2014) Spectrochim Acta 133:542–549

    Article  Google Scholar 

  62. Yarasir MN, Kandaz M, Güney O, Salih B (2012) Synthesis and photophysical properties of metallophthalocyanines substituted with a benzofuran based fluoroprobe. Spectrochim Acta A Mol Biomol Spectrosc 93:379–383

    Article  CAS  PubMed  Google Scholar 

  63. Sanusi K, Khene S, Nyokong T (2014) Enhanced optical limiting performance in phthalocyanine-quantum dot nanocomposites by free-carrier absorption mechanism. Opt Mater 37:572–582

    Article  CAS  Google Scholar 

  64. Çoşut B, Yeşilot S, Durmuş M, Kılıç A, Ahsen V (2010) Synthesis and properties of axially-phenoxycyclotriphosphazenyl substituted silicon phthalocyanine. Polyhedron 29:675–682

    Article  Google Scholar 

  65. Yaşa G, Erdoğmuş A, Uğur AL, Şener MK, Avcıata U, Nyokong T (2012) Photophysical and photochemical properties of novel phthalocyanines bearing non-peripherally substituted mercaptoquinoline moiety. J. Porphyrins Phthalocyanines 16:845–854

    Article  Google Scholar 

  66. Kırbaç E, AtmacaYaşa G, Erdoğmuş A (2014) Novel highly soluble fluoro, chloro, bromo-phenoxy-phenoxy substituted zinc phthalocyanines; synthesis, characterization and photophysicochemical properties. J Organomet Chem 752:115–122

    Article  Google Scholar 

  67. Schweikart KH, Hanack M (2000) Synthesis of nickel phthalocyanines with one aldehyde group and preparation of a Bisvinylene-Phenylene-bridged Bisphthalocyanine. Eur J Org Chem 2551-2556

Download references

Acknowledgments

This work was supported by Ministry of Science, Industry and Technology of Turkey (SANTEZ project no. 0182.STZ.2013-1) and Research Fund of Sakarya University (project no. 2014-02-04 007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Zeki Yildiz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, P., Yildiz, S.Z., Erdoğmuş, A. et al. Aldehyde Substituted Phthalocyanines: Synthesis, Characterization and Investigation of Photophysical and Photochemical Properties. J Fluoresc 26, 1521–1534 (2016). https://doi.org/10.1007/s10895-016-1852-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1852-x

Keywords

Navigation