Skip to main content

Advertisement

Log in

Fluorescence Behaviour of an Aluminium Octacarboxy Phthalocyanine - NaYGdF4:Yb/Er Nanoparticle Conjugate

  • RAPID COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Using a methanol assisted thermal decomposition approach, sphere shaped NaYGdF4:Yb/Er upconversion nanoparticles (UCNPs) were successfully synthesized. The chemical, spectroscopic and fluorescence properties of the UCNPs were fully characterized. Characteristic upconversion fluorescence emissions were produced by the NPs in the green, red and NIR regions and the NPs were also shown to possess paramagnetic properties. The influence of the UCNPs on the spectroscopic and fluorescence properties of an aluminium octacarboxy phthalocyanine AlOCPc was investigated. Covalent conjugation to an AlOCPc resulted in a large blue shift of the phthalocyanine’s Q band, which was accompanied by a decrease in the Pc’s fluorescence lifetime in DMSO. By combining the phthalocyanine and upconversion nanoparticle, we present a system capable of multimodal imaging, using both the upconversion nanoparticle’s and phthalocyanine’s emission, and magnetic resonance imaging (as a result of doping the upconversion nanoparticles with Gd3+ ions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Kaliya OL, Lukyanets EA, Vorozhtsov GN (1999) Catalysis and photocatalysis by phthalocyanines for technology, ecology and medicine. J Porphyrins Phthalocyanines 3:592–610

    Article  CAS  Google Scholar 

  2. Trogler WC (2012) In: Mingos DMP, Day P, Dahl JP (eds) Molecular electronic structures of transition metal complexes I. Springer, Berlin Heidelberg, 142:91–118

  3. Walter GM, Rudine AB, Wamser CC (2010) Porphyrins and phthalocyanines in solar photovoltaic cells. J Porphyrins Phthalocyanines 14:759–792

    Article  CAS  Google Scholar 

  4. Allen CM, Sharman WM, Van Lier JE (2001) Current status of phthalocyanines in the photodynamic therapy of cancer. J Porphyrins Phthalocyanines 5:161–169

    Article  CAS  Google Scholar 

  5. Macdonald IJ, Dougherty T (2001) Basic principles of photodynamic therapy. J Porphyrins Phthalocyanines 5:115–129

    Article  Google Scholar 

  6. Bonnett R (1995) Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev 24:19–33

    Article  CAS  Google Scholar 

  7. Kobayashi N, Furiyama T, Satoh K (2011) Rationally designed phthalocyanines having their main absorption band beyond 1000 nm. J Am Chem Soc 133:19642–19645

    Article  CAS  PubMed  Google Scholar 

  8. Haase M, Schäfer H (2011) Upconverting nanoparticles. Angew Chem Int Ed 50:5808–5829

    Article  CAS  Google Scholar 

  9. Suijver JS (2008) In: Cees Ronda (ed) Luminescence: from theory to applications, WILEY-VHC Verlag GmbH & Co. KGaA, Weinheim, ch. 4, pp. 133–176

  10. Guo Y, Kumar M, Zhang P (2007) Nanoparticle-based photosensitizers under CW infrared excitation. Chem Mater 19:6071–6072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Liu K, Liu X, Zeng Q, Zhang Y, Tu L, Liu T, Kong X, Wang Y, Cao F, Lambrechts SAG, Aalders MCG, Zhang H (2012) Covalently assembled NIR nanoplatform for simultaneous fluorescence imaging and photodynamic therapy of cancer cells. ACS Nano 6:4054–4062

    Article  CAS  PubMed  Google Scholar 

  12. Ungun B, Prud’homme RK, Budijono SJ, Shan J, Lim SF, Ju Y, Austin R (2009) Nanofabricated upconversion nanoparticles for photodynamic therapy. Opt Express 17:80–86

    Article  CAS  PubMed  Google Scholar 

  13. Shan J, Budijono SJ, Hu G, Yao N, Kang Y, Ju Y, Prud’homme RK (2011) Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy. Adv Funct Mater 21:2488–2495

    Article  CAS  Google Scholar 

  14. Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nature 18:1580–1586

    CAS  Google Scholar 

  15. Zhang P, Steelant W, Kumar M, Scholfield M (2007) Versatile photosensitizers for photodynamic therapy at infrared excitation. J Am Chem Soc 129:4526–4527

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Park YI, Kim HM, Kim JH, Moon KC, Yoo B, Lee KT, Lee N, Choi Y, Park W, Ling D, Na K, Moon WK, Choi SH, Park HS, Yoon S-Y, Suh YD, Lee SH, Hyeon T (2012) Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv Mater 24:5755–5761

    Article  CAS  PubMed  Google Scholar 

  17. Tian G, Ren W, Yan L, Jian S, Gu Z, Zhou L, Jin S, Yin W, Li S, Zhao Y (2012) Red-emitting upconverting nanoparticles for photodynamic therapy in cancer cells under near-infrared excitation. Small 9:1929–1938

    Article  PubMed  Google Scholar 

  18. Wang C, Tao H, Cheng L, Liu Z (2011) Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32:6145–6154

    CAS  PubMed  Google Scholar 

  19. Qiao X-F, Zhou J-C, Xiao JW, Wang Y-F, Sun L-D, Yan C-H (2012) Triple-functional core–shell structured upconversion luminescent nanoparticles covalently grafted with photosensitizer for luminescent, magnetic resonance imaging and photodynamic therapy in vitro. Nanoscale 4:4611–4623

    Article  CAS  PubMed  Google Scholar 

  20. Zhou A, Wei Y, Wu B, Chen Q, Xing D (2012) Pyropheophorbide A and c(RGDyK) comodified chitosan-wrapped upconversion nanoparticle for targeted near-infrared photodynamic therapy. Mol Pharm 9:1580–1589

    Article  CAS  PubMed  Google Scholar 

  21. Chen F, Zhang S, Bu W, Chen Y, Xiao Q, Liu J, Xing H, Zhou L, Peng W, Shi J (2012) A uniform sub-50 nm-sized magnetic/ upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser. Chem Eur J 18:7082–7090

    Article  CAS  PubMed  Google Scholar 

  22. Zhao Z, Han Y, Lin C, Hu D, Wang F, Chen X, Chen Z, Zheng N (2012) Multifunctional core–shell upconverting nanoparticles for imaging and photodynamic therapy of liver cancer cells. Chem Asian J 7:830–837

    Article  CAS  PubMed  Google Scholar 

  23. Chatterjee DK, Yong Z (2008) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nanomedicine 3:73–82

    Article  CAS  PubMed  Google Scholar 

  24. Guo HC, Qian HS, Idris NM, Zhang Y (2010) Singlet oxygen-induced apoptosis of cancer cells using upconversion fluorescent nanoparticles as a carrier of photosensitizer. Nanomedicine Nanotechnol 6:486–495

    Article  CAS  Google Scholar 

  25. Qian HS, Guo HS, Ho PC-L, Mahendran R, Zhang Y (2009) Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 5:2285–2290

    Article  CAS  PubMed  Google Scholar 

  26. Gu Z, Yan L, Tian G, Li S, Chai Z, Zhao Y (2013) Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv Mater 25:3758–3779

    Article  CAS  PubMed  Google Scholar 

  27. Ozoemena K, Kuznetsova N, Nyokong T (2001) Photosensitized transformation of 4-chlorophenol in the presence of aggregated and non-aggregated metallophthalocyanines. J Photochem Photobiol A Chem 139:217–224

    Article  CAS  Google Scholar 

  28. Sakamoto K, Ohno E (1997) Synthesis and electron transfer property of phthalocyanine derivatives. Progress Org Coat 31:139–145

    Article  CAS  Google Scholar 

  29. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76:1260–1264

    Article  CAS  Google Scholar 

  30. Ogunsipe A, Maree D, Nyokong T (2003) Solvent effects on the photophysical and fluorescence properties of zinc phthalocyanine derivatives. J Mol Struct 650:131–140

    Article  CAS  Google Scholar 

  31. Berezin MY, Achilefu S (2012) Fluorescence lifetime measurements and biological imaging. Chem Rev 110:2641–2684

    Article  Google Scholar 

  32. Wang F, Han Y, Lim CS, Lu Y, Wang J, Xu J, Chen H, Zhang C, Hong M, Liu X (2010) Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463:1061–1065

    Article  CAS  PubMed  Google Scholar 

  33. Johnson NJJ, Sangeetha NM, Boyer JC, van Veggel CJM (2010) Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting beta-NaYF4:Yb3+/Er3+ nanoparticles. Nanoscale 2:771–777

    Article  CAS  PubMed  Google Scholar 

  34. Chang JH, Kang KH, Choi J, Jeong YK (2008) High efficiency protein separation with organosilanes assembled silica-coated magnetic nanoparticles. Superlattice Microst 44:442–448

    Article  CAS  Google Scholar 

  35. Bhushan B (2010) Introduction to nanotechnology. In: Bhushan B (ed) Handbook of nanotechnology. Springer, Heidelberg, p 2012

    Chapter  Google Scholar 

  36. Koole R, van Schooneveld MM, Hilhorst J, Donega CDM, Hart DCT, van Blaaderen A, Vanmaekelbergh D, Meijerink A (2008) On the incorporation mechanism of hydrophobic quantum dots in silica spheres by a reverse microemulsion method. Chem Mater 20:2503–2512

    Article  CAS  Google Scholar 

  37. Park ME, Chang JH (2007) High throughput human DNA purification with aminosilanes tailored silica-coated magnetic nanoparticles. Mater Sci Eng C 27:1232–1235

    Article  CAS  Google Scholar 

  38. Mayo DW, Miller FA, Hannah RW (2003) Course notes on the interpretation of infrared and raman spectra. Wiley, Hoboken

    Google Scholar 

  39. Suyver JF, Grimm J, Veen MKV, Biner D, Kramer KW, Gudel HU (2006) Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/ or Yb3+. J Lumin 117:1–12

    Article  CAS  Google Scholar 

  40. Zhao C, Kong X, Liu X, Tu L, Wu F, Zhang Y, Liu K, Zeng Q, Zhang H (2013) Li+ ion doping: an approach for improving the crystallinity and upconversion emissions of NaYF4:Yb3+, Tm3+ nanoparticles. Nanoscale 5:8084–8089

    Article  CAS  PubMed  Google Scholar 

  41. Wang J, Wang F, Xu J, Wang Y, Liu Y, Chen X, Chen H, Liu X (2010) Lanthanide-doped LiYF4 nanoparticles: synthesis and multicolor upconversion tuning. Compus Rendus Chimie 13:731–736

    Article  CAS  Google Scholar 

  42. Schietinger S, AIchele T, Wang H, Nann T, Benson O (2012) Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett 10:134–138

    Article  Google Scholar 

  43. Wlodarczyk J, Kierdaszuk B (2003) Interpretation of fluorescence decays using a power-like model. Biophys J 85:589–598

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Hebbink GA, Stouwdam JW, Reinhoudt DN, van Veggel FCJM (2002) Lanthanide (III) - doped nanoaprticles that emit in the near-infrared. Adv Mater 14:1147–1150

    Article  CAS  Google Scholar 

  45. Malinga N, Dolotova O, Bulgakov R, Antunes E, Nyokong T (2012) Synthesis and physicochemical behaviour of aluminium trikis and tetrakis (diaquaplatinum) octacarboxyphthalocynine. Dyes Pigments 95:572–579

    Article  CAS  Google Scholar 

  46. Jiang L, Glidle A, Griffith A, McNeil CJ, Cooper JM (1997) Characterising the formation of a bioelectrochemical interface at a self-assembled monolayer using X-ray photoelectron spectroscopy. Bioelectrochem Bioenerg 42:15–23

    Article  CAS  Google Scholar 

  47. Kobayashi N, Ogata H, Nonaka N, Luk’yanets EA (2003) Effect of peripheral substitution on the electronic absorption and fluorescence spectra of metal-free and zinc phthalocyanines. Chem-A Eur J 9:5123–5134

    Article  CAS  Google Scholar 

  48. Snow AW (2003) Phthalocyanine Aggregation. In: Kadish KM, Smith KM, Guilard R (eds) The Porphyrin Handbook. Academic, San Diego, pp 129–176

    Chapter  Google Scholar 

  49. Cong F-D, Gao G, Li J-X, Huang G-Q, Wei Z, Yu F-Y, Du X-G, Xing K-Z (2010) Synthesis and aggregation study of optically active tetra-beta-[(S)-2-octanyloxy]-substituted copper and nickel phthalocyanines. J Chem Sci 122:813–818

    Article  CAS  Google Scholar 

  50. Seybold PG, Gouterman M (1969) Porphyrins: XIII: fluorescence spectra and quantum yields. J Mol Spectrosc 31:1–13

    Article  CAS  Google Scholar 

  51. Vukovic S, Corni S, Mennucci B (2009) Fluorescence enhancement of chromophores close to metal nanoparticles. Optimal setup revealed by the polarizable continuum model. J Phys Chem C 113:121–133

    Article  CAS  Google Scholar 

  52. Kotiaho A, Lahtinen R, Efimov A, Metsberg H-K, Sariola E, Lehtivuori H, Tkachenko NV, Lemmetyinen H (2010) Photoinduced charge and energy transfer in phthalocyanine-functionalized gold nanoparticles. J Phys Chem C 114:162–168

    Article  CAS  Google Scholar 

  53. McGown LB, Nithipatikom K (2000) Molecular fluorescence and phosphorescence. Appl Spectrosc Rev 35:353–393

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported through a National Research Foundation CSUR/KFD grant (South Africa), Rhodes University and by the Department of Science and Technology (DST) South Africa through a DST/NRF South African Research Chairs Initiative for the Professor of Medicinal Chemistry and Nanotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edith Antunes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 179 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taylor, J., Litwinski, C., Nyokong, T. et al. Fluorescence Behaviour of an Aluminium Octacarboxy Phthalocyanine - NaYGdF4:Yb/Er Nanoparticle Conjugate. J Fluoresc 25, 489–501 (2015). https://doi.org/10.1007/s10895-015-1539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1539-8

Keywords

Navigation