Skip to main content
Log in

Regularity of Transition Fronts in Nonlocal Dispersal Evolution Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

It is known that solutions of nonlocal dispersal evolution equations do not become smoother in space as time elapses. This lack of space regularity would cause a lot of difficulties in studying transition fronts in nonlocal equations. In the present paper, we establish some general criteria concerning space regularity of transition fronts in nonlocal dispersal evolution equations with a large class of nonlinearities, which allows the applicability of various techniques for reaction–diffusion equations to nonlocal equations, and hence serves as an initial and fundamental step for further studying various important qualitative properties of transition fronts such as stability, uniqueness and asymptotic speeds. We also prove the existence of continuously differentiable and increasing interface location functions, which give a better characterization of the propagation of transition fronts and are of great technical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alikakos, N., Bates, P.W., Chen, X.: Periodic traveling waves and locating oscillating patterns in multidimensional domains. Trans. Am. Math. Soc. 351(7), 2777–2805 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aronson, D.G., Weinberger, H.F.: Nonlinear Diffusion in Population Genetics, Combustion, and Nerve Pulse Propagation. Lecture Notes in Mathematics, vol. 446. Springer, Berlin (1975)

    MATH  Google Scholar 

  3. Aronson, D.G., Weinberger, H.F.: Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30(1), 33–76 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bates, P.W., Chen, F.: Periodic traveling waves for a nonlocal integro-differential model. Electron. J. Differ. Equ. 26, 19 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Bates, P.W., Chen, F.: Spectral analysis of traveling waves for nonlocal evolution equations. SIAM J. Math. Anal. 38(1), 116–126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bates, P.W., Chen, F.: Spectral analysis and multidimensional stability of traveling waves for nonlocal Allen-Cahn equation. J. Math. Anal. Appl. 273(1), 45–57 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bates, P.W., Chmaj, A.: An integrodifferential model for phase transitions: stationary solutions in higher space dimensions. J. Stat. Phys. 95(5–6), 1119–1139 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bates, P.W., Fife, P.C., Ren, X., Wang, X.: Traveling waves in a convolution model for phase transitions. Arch. Ration. Mech. Anal. 138(2), 105–136 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berestycki, H., Hamel, F.: Front propagation in periodic excitable media. Commun. Pure Appl. Math. 55(8), 949–1032 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Berestycki, H., Hamel, F.: Generalized Travelling Waves for Reaction-diffusion Equations. Perspectives in Nonlinear Partial Differential Equations. Contemporary Mathematics, vol. 446, pp. 101–123. American Mathematical Society, Providence, RI (2007)

    Book  MATH  Google Scholar 

  11. Berestycki, H., Hamel, F.: Generalized transition waves and their properties. Commun. Pure Appl. Math. 65(5), 592–648 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Berestycki, H., Coville, J., Vo, H.-H.: Persistence criteria for populations with non-local dispersion. (2014). http://arxiv.org/abs/1406.6346

  13. Carr, J., Chmaj, A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc. 132(8), 2433–2439 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chen, F.: Almost periodic traveling waves of nonlocal evolution equations. Nonlinear Anal. A 50(6), 807–838 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, X.: Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations. Adv. Differ. Equ. 2(1), 125–160 (1997)

    MathSciNet  MATH  Google Scholar 

  16. Coville, J.: Équations de réaction-diffusion non-locale. PhD thesis

  17. Coville, J., Dupaigne, L.: Propagation speed of travelling fronts in nonlocal reaction-diffusion equations. Nonlinear Anal. 60(5), 797–819 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Coville, J., Dupaigne, L.: On a non-local equation arising in population dynamics. Proc. R. Soc. Edinburgh Sect. A 137(4), 727–755 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Coville, J., Dávila, J., Martínez, S.: Pulsating fronts for nonlocal dispersion and KPP nonlinearity. Ann. Inst. H. Poincaré Anal. Non Linéaire 30(2), 179–223 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ding, W., Hamel, F., Zhao, X.-Q.: Bistable pulsating fronts for reaction-diffusion equations in a periodic habitat. http://arxiv.org/abs/1408.0723

  21. Fisher, R.: The wave of advance of advantageous genes. Ann. Eugen. 7, 335–369 (1937)

    MATH  Google Scholar 

  22. Fife, P.: Some Nonclassical Trends in Parabolic and Parabolic-Like Evolutions. Trends in Nonlinear Analysis. Springer, Berlin (2003)

    MATH  Google Scholar 

  23. Fife, P.C., McLeod, J.B.: The approach of solutions of nonlinear diffusion equations to travelling front solutions. Arch. Ration. Mech. Anal. 65(4), 335–361 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fife, P.C., McLeod, J.B.: A phase plane discussion of convergence to travelling fronts for nonlinear diffusion. Arch. Ration. Mech. Anal 75(4), 281–314 (1980/1981)

  25. Grinfeld, M., Hines, G., Hutson, V., Mischaikow, K., Vickers, G.T.: Non-local dispersal. Differ. Integr. Equ. 18(11), 1299–1320 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Hamel, F., Roques, L.: Fast propagation for KPP equations with slowly decaying initial conditions. J. Differ. Equ. 249(7), 1726–1745 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kametaka, Y.: On the nonlinear diffusion equation of Kolmogorov-Petrovskii-Piskunov type. Osaka J. Math. 13(1), 11–66 (1976)

    MathSciNet  MATH  Google Scholar 

  28. Kolmogorov, A., Petrowsky, I., Piscunov, N.: Study of the diffusion equation with growth of the quantity of matter and its application to a biology problem. Bjul. Moskovskogo Gos. Univ. 1, 1–26 (1937)

    Google Scholar 

  29. Kong, L., Shen, W.: Liouville type property and spreading speeds of KPP equations in periodic media with localized spatial inhomogeneity. J. Dyn. Differ. Equ. 26(1), 181–215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liang, X., Zhao, X.-Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications. Commun. Pure Appl. Math. 60(1), 1–40 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liang, X., Zhao, X.-Q.: Spreading speeds and traveling waves for abstract monostable evolution systems. J. Funct. Anal. 259, 857–903 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lim, T., Zlatoš, A.: Transition fronts for inhomogeneous Fisher-KPP reactions and non-local diffusion. Trans. Am. Math. Soc. (to appear)

  33. Mellet, A., Nolen, J., Roquejoffre, J.-M., Ryzhik, L.: Stability of generalized transition fronts. Commun. Partial Differ. Equ. 34(4–6), 521–552 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mellet, A., Roquejoffre, J.-M., Sire, Y.: Generalized fronts for one-dimensional reaction-diffusion equations. Discrete Contin. Dyn. Syst. 26(1), 303–312 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Nadin, G.: Traveling fronts in space-time periodic media. J. Math. Pures Appl. (9) 92(3), 232–262 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Nadin, G.: Existence and uniqueness of the solution of a space-time periodic reaction-diffusion equation. J. Differ. Equ. 249(6), 1288–1304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Nadin, G.: Critical travelling waves for general heterogeneous one-dimensional reaction-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire. (2014). doi:10.1016/j.anihpc.2014.03.007

  38. Nadin, G., Rossi, L.: Propagation phenomena for time heterogeneous KPP reaction-diffusion equations. J. Math. Pures Appl. (9) 98(6), 633–653 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nolen, J., Ryzhik, L.: Traveling waves in a one-dimensional heterogeneous medium. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(3), 1021–1047 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Nolen, J., Roquejoffre, J.-M., Ryzhik, L., Zlatoš, A.: Existence and non-existence of Fisher-KPP transition fronts. Arch. Ration. Mech. Anal. 203(1), 217–246 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rawal, N., Shen, W., Zhang, A.: Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats. Discrete Contin. Dyn. Syst. 35(4), 1609–1640 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  42. Schumacher, K.: Traveling-front solutions for integro-differential equations. I. J. Reine Angew. Math. 316, 54–70 (1980)

    MathSciNet  MATH  Google Scholar 

  43. Shen, W.: Travelling waves in time almost periodic structures governed by bistable nonlinearities. I. Stability and uniqueness. J. Differ. Equ. 159(1), 1–54 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  44. Shen, W.: Travelling waves in time almost periodic structures governed by bistable nonlinearities. II. Existence. J. Differ. Equ. 159(1), 55–101 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shen, W.: Traveling waves in diffusive random media. J. Dynam. Differ. Equ. 16(4), 1011–1060 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shen, W.: Traveling waves in time dependent bistable equations. Differ. Integr. Equ. 19(3), 241–278 (2006)

    MathSciNet  MATH  Google Scholar 

  47. Shen, W.: Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations. J. Dyn. Differ. Equ. 23(1), 1–44 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shen, W.: Existence of generalized traveling waves in time recurrent and space periodic monostable equations. J. Appl. Anal. Comput. 1(1), 69–93 (2011)

    MathSciNet  MATH  Google Scholar 

  49. Shen, W., Shen, Z.: Transition fronts in time heterogeneous and random media of ignition type. (2014). http://arxiv.org/abs/1407.7579

  50. Shen, W., Shen, Z.: Transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity. (2014). http://arxiv.org/abs/1410.4611

  51. Shen, W., Shen, Z.: Regularity and stability of transition fronts in nonlocal equations with time heterogeneous ignition nonlinearity. (2015). http://arxiv.org/abs/1501.02029

  52. Shen, W., Shen, Z.: Existence, uniqueness and stability of transition fronts of nonlocal equations in time heterogeneous bistable media. (2015). arXiv:1507.03711 (preprint)

  53. Shen, W., Shen, Z.: Transition fronts in nonlocal Fisher-KPP equations in time heterogeneous media. (2015). arXiv:1507.03710 (preprint)

  54. Shen, W., Shen, Z.: Stability, uniqueness and recurrence of generalized traveling waves in time heterogeneous media of ignition type. Trans. Am. Math. Soc. (accepted)

  55. Shen, W., Zhang, A.: Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats. J. Differ. Equ. 249(4), 747–795 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  56. Shen, W., Zhang, A.: Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats. Proc. Am. Math. Soc. 140(5), 1681–1696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Shen, W., Zhang, A.: Traveling wave solutions of spatially periodic nonlocal monostable equations. Commun. Appl. Nonlinear Anal. 19(3), 73–101 (2012)

    MathSciNet  MATH  Google Scholar 

  58. Tao, T., Zhu, B., Zlatoš, A.: Transition fronts for inhomogeneous monostable reaction-diffusion equations via linearization at zero. Nonlinearity 27(9), 2409–2416 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Uchiyama, K.: The behavior of solutions of some nonlinear diffusion equations for large time. J. Math. Kyoto Univ. 18(3), 453–508 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  60. Weinberger, H.: On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J. Math. Biol. 45(6), 511–548 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  61. Xin, J.: Front propagation in heterogeneous media. SIAM Rev. 42(2), 161–230 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhang, A.: Spatial spread and front propagation dynamics of nonlocal monostable equations in periodic habitats. PhD Dissertation, Auburn University (2011)

  63. Zlatoš, A.: Transition fronts in inhomogeneous Fisher-KPP reaction-diffusion equations. J. Math. Pures Appl. (9) 98(1), 89–102 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  64. Zlatoš, A.: Generalized traveling waves in disordered media: existence, uniqueness, and stability. Arch. Ration. Mech. Anal. 208(2), 447–480 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for carefully reading the manuscript, pointing out some problems that we were not aware of, and drawing our attention to Ref. [7].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwei Shen.

Appendix: Ignition Traveling Waves

Appendix: Ignition Traveling Waves

Consider the homogeneous ignition equation

$$\begin{aligned} u_{t}=J*u-u+f_{I}(u),\quad (t,x)\in \mathbb {R}\times \mathbb {R}, \end{aligned}$$
(7.1)

where J is as in (H1), and the \(C^{2}\) function \(f_{I}:[0,1]\rightarrow \mathbb {R}\) is of standard ignition type, that is, there is \(\theta _{I}\in (0,1)\) such that

$$\begin{aligned} f_{I}(u)=0,\,\,u\in [0,\theta _{I}]\cup \{1\},\quad f_{I}(u)>0,\,\,u\in (\theta _{I},1)\quad \text {and}\quad f_{I}'(1)<0. \end{aligned}$$

It was proven in [16] that the problem

$$\begin{aligned} {\left\{ \begin{array}{ll} J*\phi -\phi +c\phi _{x}+f_{I}(\phi )=0,\\ \phi _{x}<0,\,\,\phi (0)=\theta _{I},\,\,\phi (-\infty )=1\,\,\text {and}\,\,\phi (\infty )=0. \end{array}\right. } \end{aligned}$$

for \((c,\phi )\) has a unique classical solution \((c_{I},\phi _{I})\) with \(c_{I}>0\).

We used the following result in the previous sections.

Lemma 7.1

Let \(u_{0}:\mathbb {R}\rightarrow [0,1]\) be uniformly continuous and satisfy

$$\begin{aligned} \lim _{x\rightarrow -\infty }u_{0}(x)=1\quad \text {and}\quad u_{0}(x)\le e^{-\alpha _{0} (x-x_{0})},\,\,x\in \mathbb {R}\end{aligned}$$

for some \(\alpha _{0}>0\) and \(x_{0}\in \mathbb {R}\), then there exist \(\omega _{I}=\omega _{I}(\alpha _{0})>0\) and \(\epsilon _{I}>0\) such that for any \(\epsilon \in (0,\epsilon _{I}]\) there exist \(\xi ^{\pm }_{I}=\xi ^{\pm }_{I}(\epsilon ,u_{0})\in \mathbb {R}\) such that

$$\begin{aligned} \phi _{I}(x-c_{I}t-\xi ^{-}_{I})-\epsilon e^{-\omega _{I}t}\le u_{I}(t,x;u_{0})\le \phi _{I}(x-c_{I}t-\xi ^{+}_{I})+\epsilon e^{-\omega _{I}t},\quad x\in \mathbb {R}\end{aligned}$$

for all \(t\ge 0\), where \(u_{I}(t,x;u_{0})\) is the solution of (7.1) with initial data \(u_{I}(0,\cdot ;u_{0})=u_{0}\).

Lemma 7.1 can be proven as [51, Theorem 1.4]; we here simply recall it for completeness. To do so, we fix \(L_{1}>0\) so large that

$$\begin{aligned} \phi _{I}(-L_{1})\ge \frac{1+\tilde{\theta }_{I}}{2}\quad \text {and}\quad \phi _{I}(L_{1})\le \frac{\theta _{I}}{2}, \end{aligned}$$

where \(\tilde{\theta }_{I}\in (\theta _{I},1)\) is such that

$$\begin{aligned} f_{I}'(u)\le -\tilde{\beta }_{I},\quad u\in [\tilde{\theta }_{I},1] \end{aligned}$$
(7.2)

for some \(\tilde{\beta }_{I}>0\) (such \(\tilde{\theta }_{I}\) and \(\tilde{\beta }_{I}\) exist due to \(f_{I}'(1)<0\)).

For \(\alpha >0\), let \(\Gamma _{\alpha }:\mathbb {R}\rightarrow [0,1]\) be a smooth nonincreasing function satisfying

$$\begin{aligned} \Gamma _{\alpha }={\left\{ \begin{array}{ll} 1,\quad &{}x\le -L_{1}-1,\\ e^{-\alpha (x-L_{1})},\quad &{}x\ge L_{1}+1. \end{array}\right. } \end{aligned}$$

We have

Lemma 7.2

There exists \(\alpha _{*}>0\) such that such that for any \(\alpha \in (0,\alpha _{*}]\) there exists \(L_{2}=L_{2}(\alpha )>L_{1}+1\) such that

$$\begin{aligned} \big |[J*\Gamma _{\alpha }](x)-e^{-\alpha (x-L_{1})}\big |\le \frac{c_{I}}{4}\alpha e^{-\alpha (x-L_{1})},\quad x\ge L_{2}. \end{aligned}$$

Proof

See [51, Lemma 4.1]. It requires the symmetry of J so that \(\int _{\mathbb {R}}J(x)e^{\alpha x}dx-1=O(\alpha ^{2})\). \(\square \)

Now, we prove Lemma 7.1.

Proof of Lemma 7.1

Let \(\alpha =\frac{\alpha _{0}}{2}\) and \(L_{2}=L_{2}(\alpha )\) as in Lemma 7.2. For any \(\epsilon \in (0,\epsilon _{I}]\), where \(\epsilon _{I}>0\) is to be chosen, we can find \(\xi ^{\pm }=\xi _{0}^{\pm }(\epsilon ,u_{0})\in \mathbb {R}\) such that

$$\begin{aligned} \phi _{I}(x-\xi ^{-})-\epsilon \Gamma _{\alpha }(x-\xi ^{-})\le u_{0}(x)\le \phi _{I}(x-\xi ^{+})+\epsilon \Gamma _{\alpha }(x-\xi ^{+}),\quad x\in \mathbb {R}. \end{aligned}$$
(7.3)

Setting \(\xi ^{\pm }(t)=\xi ^{\pm }\pm \frac{A\epsilon }{\omega }(1-e^{-\omega t})\), where \(A>0\) and \(\omega >0\) is to be chosen, we define

$$\begin{aligned} u^{\pm }(t,x)=\phi (x-ct-\xi ^{\pm }(t))\pm \epsilon e^{-\omega t}\Gamma (x-ct-\xi ^{\pm }(t)),\quad t\ge 0, \end{aligned}$$

where \(\phi =\phi _{I}\), \(c=c_{I}\) and \(\Gamma =\Gamma _{\alpha }\). Clearly, \(u^{-}(0,\cdot )\le u_{0}\le u^{+}(0,\cdot )\). Thus, if we can show that \(u^{-}(t,x)\) and \(u^{+}(t,x)\) are sub- and super-solutions, respectively, then the lemma follows.

We show that \(u^{-}(t,x)\) is a sub-solution; \(u^{+}(t,x)\) being a super-solution can be proven along the same line. We compute

$$\begin{aligned}&u^{-}_{t}-[J*u^{-}-u^{-}]-f_{I}(u^{-})\\&\quad =A\epsilon e^{-\omega t}\phi '+\epsilon \omega e^{-\omega t}\Gamma -\epsilon e^{-\omega t}(A\epsilon e^{-\omega t}-c)\Gamma '\\&\qquad +\,\epsilon e^{-\omega t}[J*\Gamma -\Gamma ]+f_{I}(\phi )-f_{I}(u^{-}), \end{aligned}$$

where \(\phi \), \(\phi '\), \(\Gamma \) and \(\Gamma '\) are computed at \(x-ct-\xi ^{-}(t)\) and \(J*\Gamma =\int _{\mathbb {R}}J(x-y)\Gamma (y-ct-\xi ^{-}(t))dy\). We consider three cases.

Case 1. \(x-ct-\xi ^{-}(t)\le -L_{1}-1\) In this case, \(\Gamma =1\), \(\Gamma '=0\) and hence \(J*\Gamma -\Gamma \le 1-1=0\). Moreover, \(\phi \ge \frac{1+\tilde{\theta }_{I}}{2}\) by the monotonicity of \(\phi \) and the choice of \(L_{1}\), which implies that \(u_{-}\ge \phi -\epsilon _{I}\ge \tilde{\theta }_{I}\) if we choose

$$\begin{aligned} \epsilon _{I}\le \frac{1-\tilde{\theta }_{I}}{2}. \end{aligned}$$
(7.4)

It then follows that \(f_{I}(\phi )-f_{I}(u^{-})\le -\epsilon \tilde{\beta }_{I}e^{-\omega t}\Gamma \). Hence, we obtain

$$\begin{aligned} u^{-}_{t}-[J*u^{-}-u^{-}]-f_{I}(u^{-})\le \omega \epsilon e^{-\omega t}\Gamma -\epsilon \tilde{\beta }_{I}e^{-\omega t}\Gamma \le 0 \end{aligned}$$

if we choose

$$\begin{aligned} \omega \le \tilde{\beta }_{I}. \end{aligned}$$
(7.5)

Case 2. \(x-ct-\xi ^{-}(t)\in [-L_{1}-1,L_{2}]\) In this case,

$$\begin{aligned}&A\epsilon e^{-\omega t}\phi '\le A\epsilon e^{-\omega t}\sup _{x\in [-L_{1}-1,L_{2}]}\phi '(x)<0,\\&\epsilon \omega e^{-\omega t}\Gamma -\epsilon e^{-\omega t}(A\epsilon e^{-\omega t}-c)\Gamma '+\epsilon e^{-\omega t}[J*\Gamma -\Gamma ]\le \epsilon e^{-\omega t}(\omega +1) \end{aligned}$$

if we choose

$$\begin{aligned} \epsilon _{I}\le \frac{c}{A}, \end{aligned}$$
(7.6)

and \(f_{I}(\phi )-f_{I}(u^{-})\le (\sup _{u\in [0,2]}|f'_{I}(u)|)\epsilon e^{-\omega t}\) (note that it’s safe to extend \(f_{I}\) to (1, 2] so that \(\sup _{u\in [0,2]}|f'_{I}(u)|<\infty \)). It then follows that

$$\begin{aligned} u^{-}_{t}-[J*u^{-}-u^{-}]-f_{I}(u^{-})\le \epsilon e^{-\omega t}\bigg [A\sup _{x\in [-L_{1}-1,L_{2}]}\phi '(x)+\omega +1+\sup _{u\in [0,2]}|f'_{I}(u)|\bigg ]\le 0 \end{aligned}$$

if we choose

$$\begin{aligned} A\ge -\bigg [\sup _{x\in [-L_{1}-1,L_{2}]}\phi '(x)\bigg ]^{-1}\bigg [1+2\sup _{u\in [0,2]}|f'_{I}(u)|\bigg ], \end{aligned}$$
(7.7)

since \(\omega \le \tilde{\beta }_{I}\le \sup _{u\in [0,2]}|f'_{I}(u)|\) due to (7.5).

Case 3. \(x-ct-\xi ^{-}(t)\ge L_{2}\) In this case, \(\Gamma =e^{-\alpha (x-ct-\xi ^{-}(t)-L_{1})}\), \(\Gamma '=-\alpha \Gamma \) and hence,

$$\begin{aligned} \epsilon \omega e^{-\omega t}\Gamma -\epsilon e^{-\omega t}(A\epsilon e^{-\omega t}-c)\Gamma '=\epsilon e^{-\omega t}[\omega +A\alpha \epsilon e^{-\omega t}-c\alpha ]\Gamma . \end{aligned}$$

By Lemma 7.2, we have \(\epsilon e^{-\omega t}[J*\Gamma -\Gamma ]\le \epsilon e^{-\omega t}\frac{\alpha c}{4}\Gamma \). Since \(f_{I}(\phi )=0=f_{I}(u^{-})\) (note it’s safe to do zero extension of f on \((-\infty ,0)\)), we obtain

$$\begin{aligned} u^{-}_{t}-[J*u^{-}-u^{-}]-f_{I}(u^{-})\le \epsilon e^{-\omega t}\bigg [\omega +A\alpha \epsilon e^{-\omega t}-c\alpha +\frac{\alpha c}{4}\bigg ]\Gamma \le 0 \end{aligned}$$

if we choose

$$\begin{aligned} \omega \le \frac{\alpha c}{4}\quad \text {and}\quad \epsilon _{I}\le \frac{c}{4A} \end{aligned}$$
(7.8)

Consequently, if we choose A as in (7.7), \(\omega \) as in (7.5) and (7.8), and \(\epsilon _{I}\) as in (7.4) and (7.8), then we have \(u^{-}_{t}-[J*u^{-}-u^{-}]-f_{I}(u^{-})\le 0\) for \(t\ge 0\). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Shen, Z. Regularity of Transition Fronts in Nonlocal Dispersal Evolution Equations. J Dyn Diff Equat 29, 1071–1102 (2017). https://doi.org/10.1007/s10884-016-9528-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-016-9528-4

Keywords

Mathematics Subject Classification

Navigation