Skip to main content
Log in

Slow Eigenvalues of Self-similar Solutions of the Dafermos Regularization of a System of Conservation Laws: an Analytic Approach

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

The Dafermos regularization of a system of n hyperbolic conservation laws in one space dimension has, near a Riemann solution consisting of n Lax shock waves, a self-similar solution u = u ε(X/T). In Lin and Schecter (2003, SIAM J. Math. Anal. 35, 884–921) it is shown that the linearized Dafermos operator at such a solution may have two kinds of eigenvalues: fast eigenvalues of order 1/ε and slow eigenvalues of order one. The fast eigenvalues represent motion in an initial time layer, where near the shock waves solutions quickly converge to traveling-wave-like motion. The slow eigenvalues represent motion after the initial time layer, where motion between the shock waves is dominant. In this paper we use tools from dynamical systems and singular perturbation theory to study the slow eigenvalues. We show how to construct asymptotic expansions of eigenvalue-eigenfunction pairs to any order in ε. We also prove the existence of true eigenvalue-eigenfunction pairs near the asymptotic expansions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benzoni-Gavage S., Serre D., Zumbrun K. (2001). Alternate Evans functions and viscous shock waves. SIAM J. Math. Anal. 32(5): 929–962

    Article  MATH  MathSciNet  Google Scholar 

  2. Bressan A., Colombo R. (1995). Unique solution of 2× 2 conservation laws with large data. Indiana Univ. Math. J. 44, 677–725

    Article  MATH  MathSciNet  Google Scholar 

  3. Bressan A., Marson A. (1995). A variational calculus for discontinuous solutions of system of conservation laws. Comm. Partial Differential Equations 20, 1491–1552

    Article  MATH  MathSciNet  Google Scholar 

  4. Chow S.-N., Lin X.-B., Palmer K. (1989). A shadowing lemma with applications to semilinear parabolic equations. SIAM J. Math. Anal. 20, 547–557

    Article  MATH  MathSciNet  Google Scholar 

  5. Copple W.A. (1978). Dichotomies in Stability Theory, Lecture Notes in Mathematics, 629, Springer, Berlin

    Google Scholar 

  6. Dafermos C.M. (1973). Solution of the Riemann problem for a class of hyperbolic systems of conservation laws by the viscosity method. Arch. Ration. Mech. Anal. 52, 1–9

    Article  MATH  MathSciNet  Google Scholar 

  7. Evans J. (1975). Nerve axon equations: IV The stable and unstable impulse. Indiana Univ. math. J. 24, 1169–1190

    Article  MATH  Google Scholar 

  8. Freidman A. (1969). Partial Differential Equations. Holt. Reinhart and Winston, New York.

    Google Scholar 

  9. Gardner R., Zumbrun K. (1998). The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math. 51, 797–855

    Article  MathSciNet  Google Scholar 

  10. Hale J.K., Lin X.-B. (1999). Multiple internal layer solutions generated by spatially oscillatory perturbations. J. Differential Equations 154, 364–418

    Article  MATH  MathSciNet  Google Scholar 

  11. van Harten A. (1978). Nonlinear singular perturbation problems: proofs of correctness of a formal approximation based on a contraction principle in a Banach space. J. math. Anal. Appl. 65, 169–183

    Article  MATH  MathSciNet  Google Scholar 

  12. Henry D. (1981). Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840, Springer-Verlag, Berlin

    MATH  Google Scholar 

  13. Jones C.K.R.T. (1995). Geometric Singular Perturbation Theory, Lecture Notes in Mathematics 1609, Springer-Verlag, Berlin, pp. 44–118

    Google Scholar 

  14. Kokotovic, P., Khalil, H., and O’Reilly, J. (1999). Singular Perturbation Methods in Control: Analysis and Design Classics in Applied Mathematics. SIAM.

  15. Lewicka M. (2001). Stability conditions for patterns of noninteracting large shock waves. SIAM J. Math. Anal. 32, 1094–1116

    Article  MATH  MathSciNet  Google Scholar 

  16. Lewicka, M. A note on the spectral stability conditions for shock patterns, preprint.

  17. Lin X.-B. (2001). Construction and asymptotic stability of structurally stable internal layer solutions. Trans. Amer. Math. Soc. 353, 2983–3043

    Article  MATH  Google Scholar 

  18. Lin X.-B. (2004). Analytic semigroup generated by the linearization of a Riemann-Dafermos solution. Dyn. Partial Differential Equations 1, 193–208

    MATH  Google Scholar 

  19. Lin X.-B. (2005). L2 semigroup and linear stability for Riemann solutions of conservation laws. Dyn. Partial Differential Equations 2, 301–333

    Google Scholar 

  20. Lin X.-B., Schecter S. (2003). Stability of self-similar solutions of the Dafermos regularization of a system of conservation laws. SIAM J. Math. Anal. 35, 884–921

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu T. P. (1985). Nonlinear Stability of shock waves for viscous conservation laws. Mem. Amer. Math. Soc. 56, 1–108

    Google Scholar 

  22. Liu W. (2004). Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete and Continuous Dynamics 10, 871–884

    Article  MATH  Google Scholar 

  23. Nishiura, Y., and Fujii, H. SLEP method to the stability of singularly perturbed solutions with multiple transition layers in reaction-diffusion systems, in Dynamics of Infinite-Dimensional Systems (Lisbon, 1986), 211–230, NATO Adv. Sci. Inst. Ser, F Comput. Systems Sci, 37, Springer, Berlin, 1987.

  24. O’Malley R.E. (1974). Introduction to Singular Perturbations. Academic Press, New York

    MATH  Google Scholar 

  25. Palmer K. (1984). Exponential dichotomies and transversal homoclinic points. J. Differential Equations 55, 225–256

    Article  MATH  MathSciNet  Google Scholar 

  26. Pazy A. (1983). Semigroup of Linear Operators and Applications to Partial Differential Equations. Springer, New York

    Google Scholar 

  27. Sacker R.J. (1979). The splitting index for linear differential systems. J. Differential Equations 33, 368–405

    Article  MATH  MathSciNet  Google Scholar 

  28. Sacker R.J., Sell G.R. (1976). Existence of dichotomies and invariant splittings for linear differential systems, II, III. J. Differential Equations 22, 478–496, 497–522

    Google Scholar 

  29. Schecter S. (2002). Undercompressive shock waves and the Dafermos regularization. Nonlinearity 15, 1361–1377

    Article  MATH  MathSciNet  Google Scholar 

  30. Schecter S. (2004). Computation of Riemann solutions using the Dafermos regularization and continuation. Discrete and Continuous Dynamics 10, 965–986

    MATH  MathSciNet  Google Scholar 

  31. Schecter, S. (2006). Eigenvalues of self-similar solutions of the Dafermos regularization of a system of conservation laws via geometric singular perturbation theory. J. Dyn. Diff. Eq. DOI: 10.1007/s10884-005-9000-3.

  32. Schochet S. (1991). Sufficient conditions for local existence via Glimn’s scheme for large B.V. data. J. Differential Equations 89, 317–354

    Article  MATH  MathSciNet  Google Scholar 

  33. Serre D., Zumbrun K. (2001). Boundary layer stability in real vanishing viscosity limit. Comm. Math. Phys. 221, 267–292

    Article  MATH  MathSciNet  Google Scholar 

  34. Suzuki H., Nishiura Y., Ikeda H. (1996). Stability of traveling waves and a relation between the Evans function and the SLEP method. J. Reine Angew. Math. 475, 1–37

    MATH  MathSciNet  Google Scholar 

  35. Tupčiev V.A. (1964). On the splitting of an arbitrary discontinuity for a system of two first-order quasi-linear equations. USSR Comput. Math. Phys. 4, 36–48

    Google Scholar 

  36. Tupčiev V.A. (1973). The method of introducing a viscosity in the study of a problem of decay of a discontinuity. Soviet Math. Dokl. 14, 978–982

    MATH  Google Scholar 

  37. Tzavaras A.E. (1996). Wave interactions and variation estimates for self- similar zero-viscosity limits in systems of conservation laws. Arch. Ration. Mech. Anal. 135, 1–60

    Article  MATH  MathSciNet  Google Scholar 

  38. Zumbrun K., Howard P. (1998). Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J. 47, 741–871

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, XB. Slow Eigenvalues of Self-similar Solutions of the Dafermos Regularization of a System of Conservation Laws: an Analytic Approach. J Dyn Diff Equat 18, 1–52 (2006). https://doi.org/10.1007/s10884-005-9001-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-005-9001-2

Keywords

Mathematics Subject Classification

Navigation