Skip to main content
Log in

Cardiovascular dynamics during peroral endoscopic myotomy for esophageal achalasia: a prospective observational study using non-invasive finger cuff-derived pulse wave analysis

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Peroral endoscopic myotomy (POEM) is natural orifice transluminal endoscopic surgery to treat esophageal achalasia. During POEM, cardiovascular dynamics can be impaired by capnoperitoneum, capnomediastinum, and systemic carbon dioxide accumulation. We systematically investigated changes in cardiovascular dynamics during POEM. We included 31 patients having POEM in this single-center prospective observational study. Before and every 5 min during POEM we measured mean arterial pressure (MAP), heart rate (HR), cardiac index (CI), stroke volume index (SVI), and systemic vascular resistance index (SVRI) using non-invasive finger cuff-derived pulse wave analysis. During POEM, the median MAP was higher than the median baseline MAP of 77 (67;86) mmHg. HR (median at baseline: 67 (60;72) bpm), CI (2.8 (2.5;3.2) L/min/m2), SVI (42 (34;51) mL/m2), and SVRI (1994 (1652; 2559) dyn × s × cm−5 × m−2) remained stable during POEM. Mixed model-derived 95% confidence limits of hemodynamic variables during POEM were 72 to 106 mmHg for MAP, 65 to 79 bpm for HR, 2.7 to 3.3 L/min/m2 for CI, 37 and 46 mL/m2 for SVI, and 1856 and 2954 dyn × s × cm−5 × m−2 for SVRI. POEM is a safe procedure with regard to cardiovascular dynamics as it does not markedly impair MAP, HR, CI, SVI, or SVRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request.

References

  1. Pandolfino JE, Gawron AJ. Achalasia: a systematic review. JAMA. 2015;313:1841–52. https://doi.org/10.1001/jama.2015.2996.

    Article  PubMed  Google Scholar 

  2. Inoue H, Minami H, Kobayashi Y, Sato Y, Kaga M, Suzuki M, et al. Peroral endoscopic myotomy (POEM) for esophageal achalasia. Endoscopy. 2010;42:265–71. https://doi.org/10.1055/s-0029-1244080.

    Article  CAS  PubMed  Google Scholar 

  3. Stavropoulos SN, Desilets DJ, Fuchs KH, Gostout CJ, Haber G, Inoue H, et al. Per-oral endoscopic myotomy white paper summary. Gastrointest Endosc. 2014;80:1–15. https://doi.org/10.1016/j.gie.2014.04.014.

    Article  PubMed  Google Scholar 

  4. Von Renteln D, Fuchs KH, Fockens P, Bauerfeind P, Vassiliou MC, Werner YB, et al. Peroral endoscopic myotomy for the treatment of achalasia: an international prospective multicenter study. Gastroenterology. 2013;145:309–11. https://doi.org/10.1053/j.gastro.2013.04.057.

    Article  Google Scholar 

  5. von Renteln D, Inoue H, Minami H, Werner YB, Pace A, Kersten JF, et al. Peroral endoscopic myotomy for the treatment of achalasia: a prospective single center study. Am J Gastroenterol. 2012;107:411–7. https://doi.org/10.1038/ajg.2011.388.

    Article  Google Scholar 

  6. Ponds FA, Fockens P, Lei A, Neuhaus H, Beyna T, Kandler J, et al. Effect of peroral endoscopic myotomy vs pneumatic dilation on symptom severity and treatment outcomes among treatment-naive patients with achalasia: a randomized clinical trial. JAMA. 2019;322:134–44. https://doi.org/10.1001/jama.2019.8859.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Werner YB, Hakanson B, Martinek J, Repici A, von Rahden BHA, Bredenoord AJ, et al. Endoscopic or surgical myotomy in patients with idiopathic achalasia. N Engl J Med. 2019;381:2219–29. https://doi.org/10.1056/NEJMoa1905380.

    Article  PubMed  Google Scholar 

  8. Löser B, Werner YB, Löser A, Rösch T, Petzoldt M. Anesthesia in gastrointestinal endoscopy: peroral endoscopic myotomy. Anaesthesist. 2019;68:607–14. https://doi.org/10.1007/s00101-019-00655-y.

    Article  CAS  PubMed  Google Scholar 

  9. Löser B, Recio Ariza O, Saugel B, Reuter DA, Zöllner C, Werner YB, et al. Anesthesia for patients undergoing peroral endoscopic myotomy procedures: a review of the literature. Anesth Analg. 2019. https://doi.org/10.1213/ANE.0000000000004420.

    Article  Google Scholar 

  10. Löser B, Werner YB, Punke MA, Saugel B, Haas S, Reuter DA, et al. Anesthetic considerations for patients with esophageal achalasia undergoing peroral endoscopic myotomy: a retrospective case series review. Can J Anaesth. 2017;64:480–8. https://doi.org/10.1007/s12630-017-0820-5.

    Article  PubMed  Google Scholar 

  11. Meidert AS, Saugel B. Techniques for non-invasive monitoring of arterial blood pressure. Front Med. 2017;4:231. https://doi.org/10.3389/fmed.2017.00231.

    Article  Google Scholar 

  12. Saugel B, Cecconi M, Hajjar LA. Noninvasive cardiac output monitoring in cardiothoracic surgery patients: available methods and future directions. J Cardiothorac Vasc Anesth. 2019;33:1742–52. https://doi.org/10.1053/j.jvca.2018.06.012.

    Article  PubMed  Google Scholar 

  13. Saugel B, Vincent J-L. Cardiac output monitoring: how to choose the optimal method for the individual patient. Curr Opin Crit Care. 2018;24:165–72. https://doi.org/10.1097/MCC.0000000000000492.

    Article  PubMed  Google Scholar 

  14. Teboul J-L, Saugel B, Cecconi M, De Backer D, Hofer CK, Monnet X, et al. Less invasive hemodynamic monitoring in critically ill patients. Intensive Care Med. 2016;42:1350–9. https://doi.org/10.1007/s00134-016-4375-7.

    Article  PubMed  Google Scholar 

  15. Wagner JY, Saugel B. When should we adopt continuous noninvasive hemodynamic monitoring technologies into clinical routine? J Clin Monit Comput. 2015;29:1–3. https://doi.org/10.1007/s10877-014-9619-x.

    Article  PubMed  Google Scholar 

  16. Wagner JY, Körner A, Schulte-Uentrop L, Kubik M, Reichenspurner H, Kluge S, et al. A comparison of volume clamp method-based continuous noninvasive cardiac output (CNCO) measurement versus intermittent pulmonary artery thermodilution in postoperative cardiothoracic surgery patients. J Clin Monit Comput. 2018;32:235–44. https://doi.org/10.1007/s10877-017-0027-x.

    Article  PubMed  Google Scholar 

  17. Wagner JY, Grond J, Fortin J, Negulescu I, Schöfthaler M, Saugel B. Continuous noninvasive cardiac output determination using the CNAP system: evaluation of a cardiac output algorithm for the analysis of volume clamp method-derived pulse contour. J Clin Monit Comput. 2016;30:487–93. https://doi.org/10.1007/s10877-015-9744-1.

    Article  PubMed  Google Scholar 

  18. Wagner JY, Negulescu I, Schöfthaler M, Hapfelmeier A, Meidert AS, Huber W, et al. Continuous noninvasive arterial pressure measurement using the volume clamp method: an evaluation of the CNAP device in intensive care unit patients. J Clin Monit Comput. 2015;29:807–13. https://doi.org/10.1007/s10877-015-9670-2.

    Article  PubMed  Google Scholar 

  19. Jeleazcov C, Krajinovic L, Münster T, Birkholz T, Fried R, Schüttler J, et al. Precision and accuracy of a new device (CNAPTM) for continuous non-invasive arterial pressure monitoring: assessment during general anaesthesia. Br J Anaesth. 2010;105:264–72. https://doi.org/10.1093/bja/aeq143.

    Article  CAS  PubMed  Google Scholar 

  20. Smolle K-H, Schmid M, Prettenthaler H, Weger C. The accuracy of the CNAP® device compared with invasive radial artery measurements for providing continuous noninvasive arterial blood pressure readings at a medical intensive care unit: a method-comparison study. Anesth Analg. 2015;121:1508–16. https://doi.org/10.1213/ANE.0000000000000965.

    Article  PubMed  Google Scholar 

  21. Ho HS, Saunders C, Gunther RA, Wolfe BM. Effector of hemodynamics during laparoscopy: CO2 absorption or intra-abdominal pressure? J Surg Res. 1995;59:497–503. https://doi.org/10.1006/jsre.1995.1198.

    Article  CAS  PubMed  Google Scholar 

  22. Koivusalo AM, Kellokumpu I, Scheinin M, Tikkanen I, Mäkisalo H, Lindgren L. A comparison of gasless mechanical and conventional carbon dioxide pneumoperitoneum methods for laparoscopic cholecystectomy. Anesth Analg. 1998;86:153–8. https://doi.org/10.1097/00000539-199801000-00031.

    Article  CAS  PubMed  Google Scholar 

  23. Hirvonen EA, Poikolainen EO, Pääkkönen ME, Nuutinen LS. The adverse hemodynamic effects of anesthesia, head-up tilt, and carbon dioxide pneumoperitoneum during laparoscopic cholecystectomy. Surg Endosc. 2000;14:272–7. https://doi.org/10.1007/s004640000038.

    Article  CAS  PubMed  Google Scholar 

  24. Walder AD, Aitkenhead AR. Role of vasopressin in the haemodynamic response to laparoscopic cholecystectomy. Br J Anaesth. 1997;78:264–6. https://doi.org/10.1093/bja/78.3.264.

    Article  CAS  PubMed  Google Scholar 

  25. Myre K, Rostrup M, Buanes T, Stokland O. Plasma catecholamines and haemodynamic changes during pneumoperitoneum. Acta Anaesthesiol Scand. 1998;14:343–7. https://doi.org/10.1111/j.1399-6576.1998.tb04927.x.

    Article  Google Scholar 

  26. Atkinson TM, Giraud GD, Togioka BM, Jones DB, Cigarroa JE. Cardiovascular and ventilatory consequences of laparoscopic surgery. Circulation. 2017;135:700–10. https://doi.org/10.1161/CIRCULATIONAHA.116.023262.

    Article  PubMed  Google Scholar 

  27. Hömme R. Anesthesia for laparoscopic interventions. Anaesthesist. 2011;60:175–87. https://doi.org/10.1007/s00101-011-1856-5.

    Article  PubMed  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

BS: This author conceived and designed the study, was responsible for data analysis and interpretation, drafted the manuscript, and supervised the study. CV: This author collected the data, was responsible for data analysis and interpretation, and drafted the manuscript. HOP: This author was responsible for data analysis and interpretation, performed the statistical analyses, and critically revised the manuscript for important intellectual content. TR: This author was responsible for data analysis and interpretation and critically revised the manuscript for important intellectual content. MP: This author was responsible for data analysis and interpretation and critically revised the manuscript for important intellectual content. BL: This author conceived and designed the study, was responsible for data analysis and interpretation, and drafted the manuscript.

Corresponding author

Correspondence to Benjamin Löser.

Ethics declarations

Conflict of interest

BS has received institutional restricted research grants, honoraria for giving lectures, and refunds of travel expenses from CNSystems Medizintechnik GmbH (Graz, Austria). For all other authors there is no conflict of interest to disclose.

Ethics approval

Ethical approval for this study (PV5540) was provided by the Ethics Committee of the Medical Board of Hamburg, Germany (Prof M. Carstensen) on 22 August 2017.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Glossary

POEM

Peroral endoscopic myotomy

ASA

American Society of Anesthesiologists

MAP

Mean arterial pressure

HR

Heart rate

CI

Cardiac index

SVI

Stroke volume index

SVRI

Systemic vascular resistance index

CO2

Carbon dioxide

etCO2

End-tidal carbon dioxide

MV

Minute ventilation

TV

Tidal volume

RR

Respiratory rate

PEAK

Peak inspiratory pressure

PEEP

Positive end-expiratory pressure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saugel, B., Vokuhl, C., Pinnschmidt, H.O. et al. Cardiovascular dynamics during peroral endoscopic myotomy for esophageal achalasia: a prospective observational study using non-invasive finger cuff-derived pulse wave analysis. J Clin Monit Comput 35, 827–834 (2021). https://doi.org/10.1007/s10877-020-00541-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-020-00541-8

Keywords

Navigation