Skip to main content

Advertisement

Log in

Facile Synthesis of TiO2 Nanoparticles of Different Crystalline Phases and Evaluation of Their Antibacterial Effect Under Dark Conditions Against E. coli

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this paper we report the antibacterial activity in the absence of UV–Vis irradiation of TiO2 nanoparticles, in amorphous, anatase and rutile phases, obtained by the sol–gel process, on Escherichia coli strains. The synthesized TiO2 powders were characterized using X-ray diffraction (XRD), IR spectroscopy and UV–Vis absorption, as well as scanning and transmission electron microscopies. The XRD results showed that the solids were amorphous up to a temperature of 350 °C and that when subjected to heat treatments of higher temperatures, anatase crystalline phases were obtained, at 450 °C, and rutile type at temperatures higher than 770 °C, with a sub-micron particle size (< 1 μm) and varying morphology. The inactivating effect on bacteria of synthesized TiO2 was analyzed by recording the effect of its presence on bacterial strains of E. coli. To this end, the synthesized TiO2 in its amorphous (am-TiO2), anatase (a-TiO2) or rutile (r-TiO2) phases, at different concentrations, was incorporated into the E. coli cultures, placing aluminum foil over the strains to simulate darkness. Although all the phases of the TiO2 synthesized present reasonable antibacterial activity, the highest efficiency is seen in the cultures treated with r-TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. F. Banfield and D. R. Veblen (1992). Am. Miner. 77, 545–557.

    CAS  Google Scholar 

  2. W. H. Bauer (1961). Acta Crystallogr. A 14, 214–216. https://doi.org/10.1107/S0365110x61000747.

    Article  Google Scholar 

  3. G. V. Samsonov The Oxide Handbook (Plenum Press, New York, 1982).

    Book  Google Scholar 

  4. X. Bokhimi, A. Morales, M. Aguilar, J. A. Toledo-Antonio, and F. Pedraza (2001). Int. J. Hydrogen Energy 26, 1279–1287. https://doi.org/10.1016/S0360-3199(01)00063-5.

    Article  CAS  Google Scholar 

  5. F. A. Grant (1959). Rev. Mod. Phys. 31, 646–674. https://doi.org/10.1103/RevModPhys.31.646.

    Article  CAS  Google Scholar 

  6. L. Brohan, A. Verbaere, M. Tournoux, and G. Demazeau (1982). Mater. Res. Bull. 17, 355–361. https://doi.org/10.1016/0025-5408(82)90085-X.

    Article  CAS  Google Scholar 

  7. A. G. Dylla, G. Henkelman, and K. J. Stevenson (2013). Acc. Chem. Res. 46, 1104–1112. https://doi.org/10.1021/ar300176y.

    Article  CAS  PubMed  Google Scholar 

  8. L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Swamy, J. Muscat, N. M. Harrison, R. Ahuja, B. Holm, and B. Johansson (2001). Nature 410, 653–654. https://doi.org/10.1038/35070650.

    Article  CAS  PubMed  Google Scholar 

  9. J. Akimoto, Y. Gotoh, Y. Oosawa, N. Nonose, T. Kumagai, K. Aoki, and H. Takei (1994). J. Solid State Chem. 113, 27–36. https://doi.org/10.1006/jssc.1994.1337.

    Article  CAS  Google Scholar 

  10. M. Mattesini, J. S. D. Almeida, L. Dubrovinsky, N. Dubrovinskaia, B. Johansson, and R. Ahuja (2004). Phys. Rev. B 70, 212110. https://doi.org/10.1103/physRevB.70.212101.

    Article  Google Scholar 

  11. M. Latroche, L. Brohan, R. Marchand, and M. Tournoux (1989). J. Solid State Chem. 81, 78–82. https://doi.org/10.1016/0022-4596(89)90204-1.

    Article  CAS  Google Scholar 

  12. J. K. Dewhurst and J. E. Lowther (1996). Phys. Rev. B 54, R3673. https://doi.org/10.1103/PhysRevB.54.R3673.

    Article  CAS  Google Scholar 

  13. M. Gopel, W. J. Moberly Chan, and L. C. De Jonghe (1997). J. Mater. Sci. 32, 6001–6008. https://doi.org/10.1023/a:1018671212890.

    Article  Google Scholar 

  14. S. G. Kumar and K. S. Rao (2014). Nanoscale 6, 11574–11632. https://doi.org/10.1039/c4nr01657b.

    Article  CAS  PubMed  Google Scholar 

  15. U. Bach, Y. Tachinaba, J. E. Moser, S. A. Haque, J. R. Durrant, M. Graetzel, and D. R. Klug (1999). J. Am. Chem. Soc. 121, 7445–7446. https://doi.org/10.1021/ja9915403.

    Article  CAS  Google Scholar 

  16. N. G. Park, J. Van de Lagemaat, and A. J. Frank (2000). J. Phys. Chem. B 104, 8989–8994. https://doi.org/10.1021/jp9943651.

    Article  CAS  Google Scholar 

  17. M. Kaneko and I. Okura Photocatalysis: Science and Technology (Kodansha-Spring Verlag, New York, 2002).

    Google Scholar 

  18. M. Anpo and P. V. Kamat Environmentally Benign Photocatalysts (Springer, New York, 2010).

    Book  Google Scholar 

  19. G. Nogami, R. Shiratsuchi, and S. Ohkubo (1991). J. Electrochem. Soc. 138, 751–758. https://doi.org/10.1149/1.2085670.

    Article  CAS  Google Scholar 

  20. E. Topoglidis, A. E. Cass, G. Gilardi, S. Sadeghi, N. Beaumont, and J. R. Durrant (1998). Anal. Chem. 70, 5111–5113. https://doi.org/10.1021/ac980764l.

    Article  CAS  PubMed  Google Scholar 

  21. J. Geserick, T. Froeschl, N. Huesing, G. Kucerova, M. Makosch, T. Diemant, S. Ecckle, and R. J. Behm (2011). Dalton Trans. 40, 3269–3286. https://doi.org/10.1039/C0DT00911C.

    Article  CAS  PubMed  Google Scholar 

  22. Z. Zhang, A. Kladi, and X. E. Verykios (1994). J. Phys. Chem. 98, 6804–6811. https://doi.org/10.1021/j100078a024.

    Article  CAS  Google Scholar 

  23. M. M. Shubert, V. Plzak, J. Garche, and R. J. Behm (2001). Catal. Lett. 76, 143–150. https://doi.org/10.1023/A:1012365710979.

    Article  Google Scholar 

  24. W. P. Hsu, R. Yu, and E. Matijevic (1993). J. Colloid Interface Sci. 156, 56–65. https://doi.org/10.1006/jcis.1993.1080.

    Article  CAS  Google Scholar 

  25. P. Kubiak, T. Froeschl, N. Huesing, U. Hoermann, U. Kaiser, R. Schiller, C. K. C. K. Weiss, K. Landfester, and M. Wohlfahrt-Mhrens (2011). Small 7, 1690–1696. https://doi.org/10.1002/smll.201001943.

    Article  CAS  PubMed  Google Scholar 

  26. L. Kavan (2012). Chem. Rev. 12, 131–142. https://doi.org/10.1002/tcr.201100012.

    Article  CAS  Google Scholar 

  27. A. Mills, H. R. Davis, and D. Worsley (1993). Chem. Soc. Rev. 22, 417–425. https://doi.org/10.1039/CS9932200417.

    Article  CAS  Google Scholar 

  28. P. Pichat Photocatalysis and Water Purification (Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim, 2013). https://doi.org/10.1002/9783527645404.

    Book  Google Scholar 

  29. P. C. Maness, S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby (1999). Appl. Environ. Microbiol. 65, 4094–4098.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. N. Cioffi and M. Rai Nano-antimicrobials: Progress and Prospects in Section I Synthesis and Characterization of Novel Nanomicrobials (Springer, Berlin, 2012).

    Book  Google Scholar 

  31. Y. Paz, Z. Luo, L. Rabenberg, and A. Heller (1995). J. Mater. Res. 10, 2842–2848. https://doi.org/10.1557/JMR.1995.2842.

    Article  CAS  Google Scholar 

  32. G. Eranna Metal Oxide Nanostructures as Gas Sensing Devices (Taylor & Francis, Boca Raton, 2012).

    Google Scholar 

  33. X. Chen and S. S. Mao (2007). Chem. Rev. 107, 2891–2959. https://doi.org/10.1021/cr0500535.

    Article  CAS  PubMed  Google Scholar 

  34. T. Fröschl, U. Hörmann, P. Kubiak, G. Kucerová, M. Pfanzelt, C. K. Eiss, R. J. Behm, N. Hüsing, U. Kaiser, K. Landfester, and M. Wohlfahrt-Mehrens (2012). Chem. Soc. Rev. 41, 5313–5360. https://doi.org/10.1039/C2CS35013K.

    Article  PubMed  Google Scholar 

  35. Y. Bai, I. Mora-Seró, F. D. Angelis, J. Bisquert, and P. Wang (2014). Chem. Rev. 114, 1095–10130. https://doi.org/10.1021/cr400606n.

    Article  CAS  Google Scholar 

  36. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, and C. Li (2014). Chem. Rev. 114, 9987–10043. https://doi.org/10.1021/cr500008u.

    Article  CAS  PubMed  Google Scholar 

  37. U. Diebold (2003). Surf. Sci. Rep. 48, 53–229. https://doi.org/10.1016/S0167-5729(02)00100-0.

    Article  CAS  Google Scholar 

  38. V. V. Hong, H. Zung, and N. H. B. Trong (2007). Eur. Phys. J. D 44, 515–524. https://doi.org/10.1140/epjd/e2007-00186-5.

    Article  CAS  Google Scholar 

  39. H. Zhang, B. Chen, and J. F. Banfield (2008). Phys. Rev. B 78, 214106. https://doi.org/10.1103/PhysRevB.78.214106.

    Article  CAS  Google Scholar 

  40. V. V. Hong in K. S. Sattler (ed.), Handbook of Nanophysics: Nanoparticles and Quantum Dots (CRC Press, New York, 2010), pp. 1-1–1-10.

    Google Scholar 

  41. V. V. Hong (2011). Chem. Phys. Res. J. 4, 43–62.

    Google Scholar 

  42. L. Romano, V. Privitera, and C. Jagadish Defects in Semiconductors, Semiconductors and Semimatels, vol. 91 (Academic Press, San Diego, 2015).

    Google Scholar 

  43. U. I. Gaya Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids (Springer, Dordrecht, 2014).

    Book  Google Scholar 

  44. M. K. Nowotny, L. R. Sheppard, and J. Nowotny (2008). J. Phys. Chem. C 112, 5275–5300. https://doi.org/10.1021/jp077275m.

    Article  CAS  Google Scholar 

  45. X. Pan, M. Q. Yang, X. Fu, N. Zhang, and Y. J. Xu (2013). Nanoscale 5, 3601–3614. https://doi.org/10.1039/c3nr00476g.

    Article  CAS  PubMed  Google Scholar 

  46. Z. Wu, S. Cao, C. Zhang, and L. Piao (2017). Nanotechnology 28, 275706. https://doi.org/10.1088/1361-6528/aa7373.

    Article  PubMed  Google Scholar 

  47. V. Gurylev, M. Mishra, Y. C. Su, and T. P. Perng (2016). Chem. Commun. 52, 7604–7607. https://doi.org/10.1039/C5CC10610A.

    Article  CAS  Google Scholar 

  48. M. Kong, Y. Z. Li, X. Chen, T. T. Tian, P. F. Fang, F. Zheng, and X. J. Zhao (2011). J. Am. Chem. Soc. 133, 16414–16417. https://doi.org/10.1021/ja207826q.

    Article  CAS  PubMed  Google Scholar 

  49. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, and H. Pettersson (2010). Chem. Rev. 110, 6595–6663. https://doi.org/10.1021/cr900356p.

    Article  CAS  PubMed  Google Scholar 

  50. S. C. Roy, O. K. Varghese, M. Paulose, and C. A. Grimes (2010). ACS Nano 4, 1259–1273. https://doi.org/10.1021/nn9015423.

    Article  CAS  PubMed  Google Scholar 

  51. C. C. Mercado, F. J. Knorr, J. L. McHale, S. M. Usmani, A. S. Chimura, and L. V. Saraf (2012). J. Phys. Chem. C 116, 10796–10804. https://doi.org/10.1021/jp301680d.

    Article  CAS  Google Scholar 

  52. J. Wu, H. Lu, X. Zhang, F. Raziq, Y. Qu, and L. Jing (2016). Chem. Commun. 52, 5027–5029. https://doi.org/10.1039/C6CC00772D.

    Article  CAS  Google Scholar 

  53. Z. Zhao, X. Zhang, G. Zhang, Z. Liu, D. Qu, X. Miao, P. Feng, and Z. Sun (2015). Nano Res. 8, 4061–4071. https://doi.org/10.1007/s12274-015-0917-5.

    Article  CAS  Google Scholar 

  54. V. Srivastava, D. Gusain, and Y. Chandra Sharma (2015). Ind. Eng. Chem. Res. 54, 6209–6233. https://doi.org/10.1021/acs.iecr.5b01610.

    Article  CAS  Google Scholar 

  55. N. Durán, S. S. Guterres, and O. L. Alves Nanotoxicology: Materials, Methodologies and Assessments (Springer, New York, 2014). https://doi.org/10.1007/978-1-4614-8993-1.

    Book  Google Scholar 

  56. A. Albanese, P. S. Tang, and W. C. W. Chan (2012). Annu. Rev. Biomed. Eng. 14, 1–16. https://doi.org/10.1146/annurev-bioeng-071811-150124.

    Article  CAS  PubMed  Google Scholar 

  57. T. Matsunaga, R. Tomoda, T. Nakajima, and H. Wake (1985). FEMS Microbiol. Lett. 29, 211–214. https://doi.org/10.1111/j.1574-6968.1985.tb00864.x.

    Article  CAS  Google Scholar 

  58. H. M. Yadav, J. S. Kim, and S. H. Pawar (2016). Korean J. Chem. Eng. 33, 1989–1998. https://doi.org/10.1007/s11814-016-0118-2.

    Article  CAS  Google Scholar 

  59. O. Akhavan and E. Ghaderi (2010). Surf. Coat. Technol. 204, 3676–3683. https://doi.org/10.1016/j.surfcoat.2010.04.048.

    Article  CAS  Google Scholar 

  60. F. Grande and P. Tucci (2016). Mini. Rev. Med. Chem. 16, 762–769. https://doi.org/10.2174/1389557516666160321114341.

    Article  CAS  PubMed  Google Scholar 

  61. S. M. Dizaj, F. Lotfipour, M. Barzegar-Jajali, M. H. Zarrintan, and K. Adibkla (2014). Mater. Sci. Eng. C 44, 278–284. https://doi.org/10.1016/j.msec.2014.08.031.

    Article  CAS  Google Scholar 

  62. A. S. Roy, A. Parveen, A. R. Koppalkar, and M. Prasad (2013). J. Biomater. Nanobiotechnol. 1, 37–41. https://doi.org/10.4236/jbnb.2010.11005.

    Article  CAS  Google Scholar 

  63. I. Fenoglio, G. Greco, S. Livraghi, and B. Fubini (2009). Chem. Eur. J. 15, 4614–4621. https://doi.org/10.1002/chem.200802542.

    Article  CAS  PubMed  Google Scholar 

  64. M. Li, M. E. Noriega-Trevino, N. Nino-Matínez, C. Marambio-Jones, J. Wang, R. Damoiseaux, F. Ruiz, and E. M. V. Hock (2011). Environ. Sci. Technol. 45, 8989–8995. https://doi.org/10.1021/es201675m.

    Article  CAS  PubMed  Google Scholar 

  65. E. Albert, P. A. Albouy, A. Ayral, P. Basa, G. Csik, N. Nagy, S. Rouldés, V. Rouessac, G. Sáfrán, A. Suhajda, Z. Zolnai, and Z. Hórvölgyi (2015). RSC Adv. 5, 59070. https://doi.org/10.1039/c5ra05990a.

    Article  CAS  Google Scholar 

  66. I. Daou, N. Moukrad, O. Zegaoui, and F. R. Filai (2017). Water Sci. Technol. 77, 1238–1249. https://doi.org/10.2166/wst.2017.647.

    Article  CAS  Google Scholar 

  67. K. Hirota, M. Sugimoto, M. Kato, K. Tsukagoshi, T. Tanigawa, and H. Sugimoto (2010). Ceram. Int. 36, 497–506. https://doi.org/10.1016/j.ceramint.2009.09.026.

    Article  CAS  Google Scholar 

  68. V. L. Prasanna and R. Vijayaraghavan (2015). Langmuir 31, 9155–9162. https://doi.org/10.1021/acs.langmuir.5b002266.

    Article  Google Scholar 

  69. A. Joe, S. H. Park, K. D. Shim, D. J. Kim, K. H. Jhee, H. W. Lee, C. H. Heo, H. M. Kim, and E.-S. Jang (2017). J. Ind. Eng. Chem. 45, 430–439. https://doi.org/10.1016/j.jiec.2016.10.013.

    Article  CAS  Google Scholar 

  70. J. R. Gurr, A. S. S. Wang, C. H. Chen, and K. Y. Jan (2005). Toxicology 213, 66–73. https://doi.org/10.1016/j.tox.2005.

    Article  CAS  PubMed  Google Scholar 

  71. N. K. Gali, Z. Ning, W. Daoud, and P. Brimblecombe (2016). J. Appl. Toxicol. 36, 1355–1363. https://doi.org/10.1002/jat.3341.

    Article  CAS  PubMed  Google Scholar 

  72. K. Tanaka, M. F. V. Capule, and T. Hinasaga (1991). Chem. Phys. Lett. 187, 73–76. https://doi.org/10.1016/0009-2614(91)90486-S.

    Article  CAS  Google Scholar 

  73. S. L. Suib, New and Future Developments in Catalysis: Solar Photocatalysis, chap. 10 (Elsevier, Amsterdam, 2013).

  74. V. H. Grassian, Nanoscience and Nanotechnology: Environmental and Health Impacts, chap. 13 (Wiley, Hoboken, 2008).

  75. A. Rincón and C. Pulgarin (2004). Appl. Catal. B Environ. 49, 99–112. https://doi.org/10.1016/j.apcatb.2003.11.013.

    Article  CAS  Google Scholar 

  76. M. Bekbolet (1997). Water Sci. Technol. 35, 95–100. https://doi.org/10.1016/S0273-1223(97)00241-2.

    Article  CAS  Google Scholar 

  77. M. Cho, H. Chung, W. Choi, and J. Yoon (2005). Appl. Environ. Microbiol. 71, 270–275. https://doi.org/10.1128/AEM.71.1.270-275.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. M. A. Vargas and J. E. Rodríguez-Páez (2017). J. Non Cryst. Solids 459, 192–205. https://doi.org/10.1016/j.jnoncrysol.2017.01.018.

    Article  CAS  Google Scholar 

  79. K. Nakamoto Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley-Interscience, Hoboken, 2009).

    Google Scholar 

  80. L. Marchese, E. Gianotti, V. Dellarocca, T. Maschmeyer, F. Rey, S. Coluccia, and J. M. Thomas (1999). Phys. Chem. Chem. Phys. 1, 585–592. https://doi.org/10.1039/A808225A.

    Article  CAS  Google Scholar 

  81. K. Sunada, T. Watanabe, and K. Hashimoto (2003). J. Photochem. Photobiol. A 156, 227–233. https://doi.org/10.1016/S1010-6030(02)00434-3.

    Article  CAS  Google Scholar 

  82. Z. Huang, P. C. Maness, D. M. Blake, E. J. Wolfrum, S. Smolinski, and W. Jacoby (2000). J. Photochem. Photobiol. A 130, 163–170. https://doi.org/10.1016/S1010-6030(99)00205-1.

    Article  CAS  Google Scholar 

  83. M. J. Llansola-Portoles, J. J. Bergkamp, D. Finkelstein-Shapino, B. D. Sherman, G. Kadis, N. M. Dimitrijevic, D. Gust, T. A. Moore, and A. L. Moore (2014). J. Phys. Chem. A 118, 10631–10638. https://doi.org/10.1021/jp506284q.

    Article  CAS  PubMed  Google Scholar 

  84. D. A. Panayotov and J. R. Morris (2009). J. Phys. Chem. C 113, 15684–15691. https://doi.org/10.1021/jp9036233.

    Article  CAS  Google Scholar 

  85. L. B. Xiong, J. L. Li, B. Yang, and Y. Yu (2012). J. Nanomater.. https://doi.org/10.1155/2012/831524.

    Article  Google Scholar 

  86. A. C. Papageorgiou, N. S. Beglitis, C. L. Pang, G. Teobaldi, G. Caballh, Q. Chen, A. J. Fisher, W. A. Hofer, and G. Thornton (2010). PNAS 107, 2391–2396. https://doi.org/10.1073/pnas.0911349107.

    Article  PubMed  Google Scholar 

  87. A. E. Nel, L. Madler, D. Velegol, T. Xia, E. M. V. Hoek, P. Somasundaran, F. Klaessig, V. Castranova, and M. Thompson (2009). Nat. Mater. 8, 543–557. https://doi.org/10.1038/nmat2442.

    Article  CAS  PubMed  Google Scholar 

  88. Q. X. Mu, G. B. Jiang, L. X. Chen, H. Y. Zhou, D. Fourches, A. Tropsha, and B. Yan (2014). Chem. Rev. 114, 7740–7781. https://doi.org/10.1021/cr400295a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. V. M. Longo, F. C. Picon, C. Zamperini, A. R. Albuquerque, J. R. Sambrano, C. E. Vergani, A. L. Machado, J. Andrés, A. C. Hernandes, J. A. Varela, and E. Longo (2013). Chem. Phys. Lett. 577, 114–120. https://doi.org/10.1016/j.cplett.2013.05.056.

    Article  CAS  Google Scholar 

  90. T. Bak, J. Nowotny, N. J. Sucher, and E. Wachsman (2011). J. Phys. Chem. C 115, 15711–15738. https://doi.org/10.1021/jp2027862.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the University of Cauca for making their laboratory facilities available for carrying out this work and to VRI-Unicauca for all logistical support. We are especially grateful to Colin McLachlan for suggestions relating to the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Rodríguez-Páez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas, M.A., Rodríguez-Páez, J.E. Facile Synthesis of TiO2 Nanoparticles of Different Crystalline Phases and Evaluation of Their Antibacterial Effect Under Dark Conditions Against E. coli. J Clust Sci 30, 379–391 (2019). https://doi.org/10.1007/s10876-019-01500-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01500-3

Keywords

Navigation