Skip to main content
Log in

Hydrothermal Synthesis of Bismuth Sulfide (Bi2S3) Nanorods: Bismuth(III) Monosalicylate Precursor in the Presence of Thioglycolic Acid

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Well-segregated bismuth sulfide (Bi2S3) nanorods with a high order of crystallinity have been successfully prepared from bismuth(III) monosalicylate [BiO(C7H5O3)] by a simple hydrothermal reaction in H2O at 180 °C. Bismuth(III) monosalicylate and thioglycolic acid act as the starting materials. The products were characterized by powder X-ray diffraction, Ultraviolet–Visible (UV–Vis) spectroscopy, transmission electron microscopy photoluminescence spectroscopy, and Fourier transform infrared spectra. The powder X-ray diffraction pattern shows the product belongs to the orthorhombic Bi2S3 phase. Their UV–Vis spectrum shows the absorbance at 328 nm, with its direct energy band gap of 2.6 eV. Bismuth salicylate, which is known to be a complex, may play a critical role as a precursor and a template for the growth of linear bismuth sulfide nanorods. Finally the influences of the reaction conditions are discussed and a possible mechanism for the formation of Bi2S3 nanorods is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan (2003). Adv. Mater. 15, 353.

    Article  CAS  Google Scholar 

  2. Y. W. Jun, J. S. Choi, and J. W. Cheon (2006). Chem. Int. Ed. 45, 3414.

    Article  CAS  Google Scholar 

  3. F. Mohandes, F. Davar, and M. Salavati-Niasari (2010). J. Magn. Magn. Mater. 322, 872.

    Article  CAS  Google Scholar 

  4. X. Cao, L. Li, and Y. Xie (2004). J. Colloid Interface Sci. 273, 175.

    Article  CAS  Google Scholar 

  5. F. Davar, M. Salavati-Niasari, and Z. Fereshteh (2010). J. Alloys Compd. 496, 638.

    Article  CAS  Google Scholar 

  6. M. Salavati-Niasari, F. Davar, and Z. Fereshteh (2010). J. Alloys Compd. 494, 410.

    Article  CAS  Google Scholar 

  7. M. Cinke, J. Li, C. W. Bauschlicher Jr., A. Ricca, and M. Meyyappan (2003). Chem. Phys. Lett. 376, 761.

    Article  CAS  Google Scholar 

  8. S. Y. Yeo, H. J. Lee, and S. H. Jeong (2003). J. Mater. Sci. 38, 2143.

    Article  CAS  Google Scholar 

  9. B. Miller and A. Heller (1976). Nature (London) 262, 680.

    Article  CAS  Google Scholar 

  10. J. M. Schoijet (1979). Sol. Energy Mater. 1, 43.

    Article  CAS  Google Scholar 

  11. M. E. Rincòn, R. Suàrez, and P. K. Nair (1996). J. Phys. Chem. Solids 57, 1947.

    Article  Google Scholar 

  12. P. Boudjouk, M. P. Remngton Jr., D. G. Grier, B. R. Jarabek, and G. J. McCarthy (1998). Inorg. Chem. 37, 3538.

    Article  CAS  Google Scholar 

  13. R. Suarea, P. K. Nair, and P. V. Kamat (1998). Langmuir 14, 3236.

    Article  Google Scholar 

  14. M. Salavati-Niasari, F. Davar, and Z. Fereshteh (2009). Chem. Eng. J. 146, 498.

    Article  CAS  Google Scholar 

  15. H. Zhang, Y. Ji, X. Ma, J. Xu, and D. Yang (2003). Nanotechnology 14, 974.

    Article  CAS  Google Scholar 

  16. J. Lu, Q. F. Han, X. J. Yang, L. D. Lu, and X. Wang (2007). Mater. Lett. 61, 2883.

    Article  CAS  Google Scholar 

  17. Q. Lu, F. Gao, and S. Komarneni (2004). J. Am. Chem. Soc. 126, 54.

    Article  CAS  Google Scholar 

  18. P. S. Sonawane and L. A. Patil (2007). Mater. Chem. Phys. 105, 157.

    Article  CAS  Google Scholar 

  19. H. Wang, J. J. Zhu, J. M. Zhu, and H. Y. Chen (2002). J. Phys. Chem. B 106, 3848.

    Article  CAS  Google Scholar 

  20. L. S. Li, N. J. Sun, Y. Y. Huang, Y. Qin, N. N. Zhao, G. N. Gao, M. X. Li, H. H. Zhou, and L. M. Qi (2008). Adv. Funct. Mater. 18, 1194.

    Article  CAS  Google Scholar 

  21. W. T. Yao and S. H. Yu (2007). Int. J. Nanotechnol. 4, 129.

    Article  CAS  Google Scholar 

  22. M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2009). J. Alloys Compd. 475, 782.

    Article  CAS  Google Scholar 

  23. M. Salavati-Niasari, F. Davar, and M. R. Loghman-Estarki (2009). J. Alloys Compd. 481, 776.

    Article  CAS  Google Scholar 

  24. M. Salavati-Niasari, F. Davar, and M. R. Loghman-Estarki (2010). J. Alloys Compd. 494, 199.

    Article  CAS  Google Scholar 

  25. M. Salavati-Niasari, D. Ghanbari, and F. Davar (2010). J. Alloys Compd. 492, 570.

    Article  CAS  Google Scholar 

  26. M. Salavati-Niasari, M. R. Loghman-Estarki, and F. Davar (2008). Chem. Eng. J. 145, 346.

    Article  CAS  Google Scholar 

  27. M. Salavati-Niasari, M. Bazarganipour, and F. Davar (2010). J. Alloys Compd. 489, 530.

    Article  CAS  Google Scholar 

  28. M. Salavati-Niasari, M. Bazarganipour, and F. Davar (2010). J. Alloys Compd. 499, 121.

    Article  CAS  Google Scholar 

  29. Y. Yu, C. H. Jin, R. H. Wang, Q. Chen, and L. M. Peng (2005). J. Phys. Chem. B 109, 18772.

    Article  CAS  Google Scholar 

  30. X. Li, J. Cui, L. Zhang, W. Yu, F. Guo, and Y. Qian (2005). Nanotechnology 16, 1771.

    Article  Google Scholar 

  31. G. Xie, Z. P. Qiao, M. H. Zeng, X. M. Chen, and S. L. Gao (2004). Cryst. Growth Des. 4, 513.

    Article  CAS  Google Scholar 

  32. L. Tian, H. Y. Tan, and J. J. Vittal (2008). Cryst. Growth Des. 8, 734–738.

    Article  Google Scholar 

  33. G. Q. Zhu and P. Liu (2009). Cryst. Res. Technol. 44, 713–720.

    Article  CAS  Google Scholar 

  34. D. Zhan, X. Zhou, Y. Zhang, J. Hong, and K. Zhang (2005). Thermochim. Acta 428, 47–50.

    Article  CAS  Google Scholar 

  35. R. Chen, M. H. So, C.-M. Che, and H. Sun (2005). J. Mater. Chem. 15, 4540.

    Article  CAS  Google Scholar 

  36. D. Fan, P. J. Thomas, and P. O’Brien (2008). Chem. Phys. Lett. 465, 110.

    Article  CAS  Google Scholar 

  37. V. K. Jain (2005). Bull. Mater. Sci. 28, 313.

    Article  CAS  Google Scholar 

  38. M. Salavati-Niasari, N. Mir, and F. Davar (2009). J. Phys. Chem. Solids 70, 847.

    Article  CAS  Google Scholar 

  39. E. V. Timakova, T. A. Udalova, and Yu. M. Yukhin (2009). Russ. J. Inorg. Chem. 54, 873.

    Article  Google Scholar 

  40. P. R. Tel’zhenskaya and E. M. Shvarts (1977). Koord Khim 3, 1279.

    Google Scholar 

  41. Y. Y. Kharitonov and Z. K. Tuierbakhova (1989). Dokl. Akad. Nauk SSSR 307, 1423.

    CAS  Google Scholar 

  42. W. Lewandowski, M. Kalinowska, and H. Lewandowska (2005). J. Inorg. Biochem. 99, 1407.

    Article  CAS  Google Scholar 

  43. R. J. Betsch and N. W. B. White (1977). Spectrochim. Acta 34A, 505.

    Google Scholar 

  44. E. C. Yost, M. Tejedor-Tejedor, and M. A. Anderson (1990). Environ. Sci. Technol. 24, 822.

    Article  CAS  Google Scholar 

  45. D. Arivuoli, F. D. Gnanam, and P. Ramasamy (1988). J. Mater. Sci. Lett. 7, 711.

    Article  CAS  Google Scholar 

  46. J. Cryst, E. M. Conwell, L. Seigle, and C. W. Spencer (1957). J. Phys. Chem. Solids 2, 240.

    Article  Google Scholar 

  47. M. Salavati-Niasari, D. Ghanbari, and F. Davar (2009). J. Alloys Compd. 488, 442.

    Article  CAS  Google Scholar 

  48. W. Li, S. N. Katore, and C. H. Bhosale (2000). Mater. Chem. Phys. 64, 166.

    Article  Google Scholar 

  49. W. Li (2008). Mater. Lett. 62, 243.

    Article  CAS  Google Scholar 

  50. J. Zhan, X. Yang, D. Wang, S. Li, Y. Xie, Y. Xia, and Y. T. Qian (2000). Adv. Mater. 12, 1348.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to council of University of Kashan for supporting this work by Grant No. (159271/35), Iran National Science Foundation and IST, Jawaharlal Nehru Technological University Hyderabad and TEM section, SAIF, NEHU, Shillong, Meghalaya, India, for providing financial support to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Salavati-Niasari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salavati-Niasari, M., Behfard, Z., Amiri, O. et al. Hydrothermal Synthesis of Bismuth Sulfide (Bi2S3) Nanorods: Bismuth(III) Monosalicylate Precursor in the Presence of Thioglycolic Acid. J Clust Sci 24, 349–363 (2013). https://doi.org/10.1007/s10876-012-0520-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0520-9

Keywords

Navigation