Skip to main content

Advertisement

Log in

Clinical Features and Genetic Analysis of Taiwanese Primary Immunodeficiency Patients with Prolonged Diarrhea and Monogenetic Inflammatory Bowel Disease

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Diarrhea lasting longer than 14 days which fails to respond to conventional management is defined as severe and protracted diarrhea and might overlap with inflammatory bowel disease (IBD).

Methods

The prevalence, associated pathogens, and prognosis of severe and protracted diarrhea without IBD (SD) and with monogenetic IBD (mono-IBD) in primary immunodeficiency patients (PID) were investigated in Taiwan.

Results

A total of 301 patients were enrolled between 2003 and 2022, with predominantly pediatric-onset PID. Of these, 24 PID patients developed the SD phenotype before prophylactic treatment, including Btk (six), IL2RG (four), WASP, CD40L, gp91 (three each), gp47, RAG1 (one each), CVID (two), and SCID (one) without identified mutations. The most detectable pathogens were pseudomonas and salmonella (six each), and all patients improved after approximately 2 weeks of antibiotic and/or IVIG treatments. Six (25.0%) mortalities without HSCT implementation were due to respiratory failure from interstitial pneumonia (3 SCID and 1 CGD), intracranial hemorrhage (WAS), and lymphoma (HIGM). In the mono-IBD group, seventeen patients with mutant TTC7A (2), FOXP3 (2), NEMO (2), XIAP (2), LRBA (1), TTC37 (3), IL10RA (1), STAT1 (1), ZAP70 (1), PIK3CD (1), and PIK3R1 (1) genes failed to respond to aggressive treatments. Nine mono-IBD patients with TTC7A (2), FOXP3 (2), NEMO (2), XIAP (2), and LRBA (1) mutations were fatal in the absence of HSCT. The mono-IBD group had a significantly earlier age of diarrhea onset (1.7 vs 33.3 months, p = 0.0056), a longer TPN duration (34.2 vs 7.0 months, p < 0.0001), a shorter follow-up period (41.6 vs 132.6 months, p = 0.007), and a higher mortality rate (58.9 vs 25.0%, p = 0.012) compared with the SD group.

Conclusion

When compared to those with the SD phenotype, the mono-IBD patients had significant early-onset and poor responses to empiric antibiotics, IVIG, and steroids. Anti-inflammatory biologics and suitable HSCT still have the potential to control or even cure the mono-IBD phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All have been in the text and supplemental data.

References

  1. Agarwal S, Cunningham-Rundles C. Gastrointestinal manifestations and complications of primary immunodeficiency disorders. Immunol Allergy Clin North Am. 2019;39(1):81–94. https://doi.org/10.1016/j.iac.2018.08.006.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Agarwal S, Mayer L. Gastrointestinal manifestations in primary immune disorders. Inflamm Bowel Dis. 2010;16(4):703–11. https://doi.org/10.1002/ibd.21040.

    Article  PubMed  Google Scholar 

  3. Agarwal S, Mayer L. Pathogenesis and treatment of gastrointestinal disease in antibody deficiency syndromes. J Allergy Clin Immunol. 2009;124(4):658–64. https://doi.org/10.1016/j.jaci.2009.06.018.

    Article  CAS  PubMed  Google Scholar 

  4. Velounias RL, Tull TJ. Human B-cell subset identification and changes in inflammatory diseases. Clin Exp Immunol. 2022;210(3):201–16. https://doi.org/10.1093/cei/uxac104.

    Article  PubMed  Google Scholar 

  5. Catassi C, Fabiani E, Spagnuolo MI, Barera G, Guarino A. Severe and protracted diarrhea: results of the 3-year SIGEP multicenter survey. Working Group of the Italian Society of Pediatric Gastroenterology and Hepatology (SIGEP). J Pediatr Gastroenterol Nutr. 1999;29(1):63–8. https://doi.org/10.1097/00005176-199907000-00016.

    Article  CAS  PubMed  Google Scholar 

  6. Guarino A, Spagnuolo MI, Russo S, Albano F, Guandalini S, Capano G, et al. Etiology and risk factors of severe and protracted diarrhea. J Pediatr Gastroenterol Nutr. 1995;20(2):173–8. https://doi.org/10.1097/00005176-199502000-00006.

    Article  CAS  PubMed  Google Scholar 

  7. Li Y, de Haar C, Peppelenbosch MP, van der Woude CJ. New insights into the role of STAT3 in IBD. Inflamm Bowel Dis. 2012;18(6):1177–83. https://doi.org/10.1002/ibd.21884.

    Article  PubMed  Google Scholar 

  8. Lees CW, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other diseases. Gut. 2011;60(12):1739–53. https://doi.org/10.1136/gut.2009.199679.

    Article  CAS  PubMed  Google Scholar 

  9. Cho JH, Brant SR. Recent insights into the genetics of inflammatory bowel disease. Gastroenterology. 2011;140(6):1704–12. https://doi.org/10.1053/j.gastro.2011.02.046.

    Article  CAS  PubMed  Google Scholar 

  10. Brand S. Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut. 2009;58(8):1152–67. https://doi.org/10.1136/gut.2008.163667.

    Article  CAS  PubMed  Google Scholar 

  11. Schmitt H, Neurath MF, Atreya R. Role of the IL23/IL17 Pathway in Crohn’s disease. Front Immunol. 2021;12:622934. https://doi.org/10.3389/fimmu.2021.622934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Noviello D, Mager R, Roda G, Borroni RG, Fiorino G, Vetrano S. The IL23-IL17 immune axis in the treatment of ulcerative colitis: successes, defeats, and ongoing challenges. Front Immunol. 2021;12:611256. https://doi.org/10.3389/fimmu.2021.611256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duerr RH, Taylor KD, Brant SR, Rioux JD, Silverberg MS, Daly MJ, et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science. 2006;314(5804):1461–3. https://doi.org/10.1126/science.1135245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schäffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45. https://doi.org/10.1056/NEJMoa0907206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Glocker EO, Frede N, Perro M, Sebire N, Elawad M, Shah N, et al. Infant colitis—it’s in the genes. Lancet. 2010;376(9748):1272. https://doi.org/10.1016/S0140-6736(10)61008-2.

    Article  PubMed  Google Scholar 

  16. Kotlarz D, Beier R, Murugan D, Diestelhorst J, Jensen O, Boztug K, et al. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology. 2012;143(2):347–55. https://doi.org/10.1053/j.gastro.2012.04.045.

    Article  CAS  PubMed  Google Scholar 

  17. Mao H, Yang W, Lee PP, Ho MH, Yang J, Zeng S, et al. Exome sequencing identifies novel compound heterozygous mutations of IL-10 receptor 1 in neonatal-onset Crohn’s disease. Genes Immun. 2012;13(5):437–42. https://doi.org/10.1038/gene.2012.8.

    Article  CAS  PubMed  Google Scholar 

  18. Engelhardt KR, Shah N, Faizura-Yeop I, KocacikUygun DF, Frede N, et al. Clinical outcome in IL-10- and IL-10 receptor-deficient patients with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2013;131(3):825–30. https://doi.org/10.1016/j.jaci.2012.09.025.

    Article  CAS  PubMed  Google Scholar 

  19. Alangari A, Alsultan A, Adly N, Massaad MJ, Kiani IS, Aljebreen A, et al. LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol. 2012;130(2):481-8.e2. https://doi.org/10.1016/j.jaci.2012.05.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cannioto Z, Berti I, Martelossi S, Bruno I, Giurici N, Crovella S, et al. IBD and IBD mimicking enterocolitis in children younger than 2 years of age. Eur J Pediatr. 2009;168(2):149–55. https://doi.org/10.1007/s00431-008-0721-2.

    Article  CAS  PubMed  Google Scholar 

  21. Ozgür TT, Asal GT, Cetinkaya D, Orhan D, Kiliç SS, Usta Y, et al. Hematopoietic stem cell transplantation in a CD3 gamma-deficient infant with inflammatory bowel disease. Pediatr Transplant. 2008;12(8):910–3. https://doi.org/10.1111/j.1399-3046.2008.00957.x.

    Article  PubMed  Google Scholar 

  22. Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forkhead box protein 3 mutations and lack of regulatory T cells. J Allergy Clin Immunol. 2007;120(4):744–50. https://doi.org/10.1016/j.jaci.2007.08.044. (quiz 751-2).

    Article  CAS  PubMed  Google Scholar 

  23. Barzaghi F, Passerini L, Bacchetta R. Immune dysregulation, polyendocrinopathy, enteropathy, x-linked syndrome: a paradigm of immunodeficiency with autoimmunity. Front Immunol. 2012;31(3):211. https://doi.org/10.3389/fimmu.2012.00211.

    Article  Google Scholar 

  24. Catucci M, Castiello MC, Pala F, Bosticardo M, Villa A. Autoimmunity in wiskott-Aldrich syndrome: an unsolved enigma. Front Immunol. 2012;3:209. https://doi.org/10.3389/fimmu.2012.00209.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dupuis-Girod S, Medioni J, Haddad E, Quartier P, Cavazzana-Calvo M, Le Deist F, et al. Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics. 2003;111(5 Pt 1):e622–7. https://doi.org/10.1542/peds.111.5.e622.

    Article  PubMed  Google Scholar 

  26. Marks DJ, Miyagi K, Rahman FZ, Novelli M, Bloom SL, Segal AW. Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn’s disease. Am J Gastroenterol. 2009;104(1):117–24. https://doi.org/10.1038/ajg.2008.72.

    Article  CAS  PubMed  Google Scholar 

  27. Muise AM, Xu W, Guo CH, Walters TD, Wolters VM, Fattouh R, et al. NADPH oxidase complex and IBD candidate gene studies: identification of a rare variant in NCF2 that results in reduced binding to RAC2. Gut. 2012;61(7):1028–35. https://doi.org/10.1136/gutjnl-2011-300078.

    Article  CAS  PubMed  Google Scholar 

  28. Marsh RA, Madden L, Kitchen BJ, Mody R, McClimon B, Jordan MB, et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood. 2010;116(7):1079–82. https://doi.org/10.1182/blood-2010-01-256099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. PachlopnikSchmid J, Canioni D, Moshous D, Touzot F, Mahlaoui N, Hauck F, et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood. 2011;117(5):1522–9. https://doi.org/10.1182/blood-2010-07-298372.

    Article  CAS  Google Scholar 

  30. Yang X, Kanegane H, Nishida N, Imamura T, Hamamoto K, Miyashita R, et al. Clinical and genetic characteristics of XIAP deficiency in Japan. J Clin Immunol. 2012;32(3):411–20. https://doi.org/10.1007/s10875-011-9638-z.

    Article  CAS  PubMed  Google Scholar 

  31. Speckmann C, Lehmberg K, Albert MH, Damgaard RB, Fritsch M, Gyrd-Hansen M, et al. X-linked inhibitor of apoptosis (XIAP) deficiency: the spectrum of presenting manifestations beyond hemophagocytic lymphohistiocytosis. Clin Immunol. 2013;149(1):133–41. https://doi.org/10.1016/j.clim.2013.07.004.

    Article  CAS  PubMed  Google Scholar 

  32. Cheng LE, Kanwar B, Tcheurekdjian H, Grenert JP, Muskat M, Heyman MB, et al. Persistent systemic inflammation and atypical enterocolitis in patients with NEMO syndrome. Clin Immunol. 2009;132(1):124–31. https://doi.org/10.1016/j.clim.2009.03.514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee WI, Huang JL, Jaing TH, Shyur SD, Yang KD, Chien YH, et al. Distribution, clinical features and treatment in Taiwanese patients with symptomatic primary immunodeficiency diseases (PIDs) in a nationwide population-based study during 1985–2010. Immunobiology. 2011;216(12):1286–94. https://doi.org/10.1016/j.imbio.2011.06.002.

    Article  CAS  PubMed  Google Scholar 

  34. Lien R, Lin YF, Lai MW, Weng HY, Wu RC, Jaing TH, et al. Novel mutations of the tetratricopeptide repeat domain 7A gene and phenotype/genotype comparison. Front Immunol. 2017;8:1066. https://doi.org/10.3389/fimmu.2017.01066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee WI, Chen CC, Jaing TH, Ou LS, Hsueh C, Huang JL. A nationwide study of severe and protracted diarrhoea in patients with primary immunodeficiency diseases. Sci Rep. 2017;7(1):3669. https://doi.org/10.1038/s41598-017-03967-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. RAPID: Resource of primary immunodeficiency diseases. http://rapid.rcai.riken.jp/ website

  37. Lee WI, Kuo ML, Huang JL, Lin SJ, Wu CJ. Distribution and clinical aspects of primary immunodeficiencies in a Taiwan pediatric tertiary hospital during a 20-year period. J Clin Immunol. 2005;25(2):162–73. https://doi.org/10.1007/s10875-005-2822-2.

    Article  PubMed  Google Scholar 

  38. Lee WI, Jaing TH, Hsieh MY, Kuo ML, Lin SJ, Huang JL. Distribution, infections, treatments and molecular analysis in a large cohort of patients with primary immunodeficiency diseases (PIDs) in Taiwan. J Clin Immunol. 2006;26(3):274–83. https://doi.org/10.1007/s10875-006-9013-7.

    Article  PubMed  Google Scholar 

  39. Chuang CH, Wang YH, Chang HJ, Chen HL, Huang YC, Lin TY, et al. Shanghai fever: a distinct Pseudomonas aeruginosa enteric disease. Gut. 2014;63(5):736–43. https://doi.org/10.1136/gutjnl-2013-304786.

    Article  PubMed  Google Scholar 

  40. Lee WI, Huang JL, Chen CC, Lin JL, Wu RC, Jaing TH, et al. Identifying mutations of the tetratricopeptide repeat domain 37 (TTC37) gene in infants with intractable diarrhea and a comparison of Asian and non-Asian phenotype and genotype: a global case-report study of a well-defined syndrome with immunodeficiency. Medicine (Baltimore). 2016;95(9):e2918. https://doi.org/10.1097/MD.0000000000002918.

    Article  CAS  PubMed  Google Scholar 

  41. Chen HM, Wang Y, Su LH, Chiu CH. Nontyphoid salmonella infection: microbiology, clinical features, and antimicrobial therapy. Pediatr Neonatol. 2013;54(3):147–52. https://doi.org/10.1016/j.pedneo.2013.01.010.

    Article  PubMed  Google Scholar 

  42. Uzel G, Sampaio EP, Lawrence MG, Hsu AP, Hackett M, Dorsey MJ, et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J Allergy Clin Immunol. 2013;131(6):1611–23. https://doi.org/10.1016/j.jaci.2012.11.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sampaio EP, Hsu AP, Pechacek J, Bax HI, Dias DL, Paulson ML, et al. Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis. J Allergy Clin Immunol. 2013;131(6):1624–34. https://doi.org/10.1016/j.jaci.2013.01.052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Uhlig HH, Schwerd T, Koletzko S, Shah N, Kammermeier J, Elkadri A, COLORS in IBD Study Group and NEOPICS, et al. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology. 2014;147(5):990-1007.e3. https://doi.org/10.1053/j.gastro.2014.07.023.

    Article  PubMed  Google Scholar 

  45. Uhlig HH. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut. 2013;62(12):1795–805. https://doi.org/10.1136/gutjnl-2012-303956.

    Article  CAS  PubMed  Google Scholar 

  46. Slatter MA, Gennery AR. Advances in hematopoietic stem cell transplantation for primary immunodeficiency. Expert Rev Clin Immunol. 2013;9(10):991–9. https://doi.org/10.1586/1744666X.2013.836061.

    Article  CAS  PubMed  Google Scholar 

  47. Kammermeier J, Lucchini G, Pai SY, Worth A, Rampling D, Amrolia P, et al. Stem cell transplantation for tetratricopeptide repeat domain 7A deficiency: long-term follow-up. Blood. 2016;128(9):1306–8. https://doi.org/10.1182/blood-2016-01-696385.

    Article  CAS  PubMed  Google Scholar 

  48. Klemann C, Pannicke U, Morris-Rosendahl DJ, Vlantis K, Rizzi M, Uhlig H, et al. Transplantation from a symptomatic carrier sister restores host defenses but does not prevent colitis in NEMO deficiency. Clin Immunol. 2016;164:52–6. https://doi.org/10.1016/j.clim.2016.01.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Notarangelo LD. Multiple intestinal atresia with combined immune deficiency. Curr Opin Pediatr. 2014;26(6):690–6. https://doi.org/10.1097/MOP.0000000000000159.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all of the patients and their families for their kind cooperation and their physicians for the referrals.

Funding

This study received grants from the Chang-Gung Medical Research Progress (Grant CMRPG3M0351, CIRPG3M0081, and CMRPG 4B0051-53), the National Science Council (Grants MOST 110–2314-B-182A-033-, 111–2314-B-182A-110-, NMRPG3L0241, and NMRPG3M0321) and the Taiwan Foundation for Rare Disorders (TFRD, PMRPG3M0061 and PMRPG3N0031).

Author information

Authors and Affiliations

Authors

Contributions

LWI, CCC, and HJL designed the study and organized the team; LWI, LCG, and KCC performed the immunological assessments and genetic analysis; and LWI, CCC, LWT, JTH, and CSH took care of the patients. All of the authors participated in this work and approved the submitted version of the manuscript for publication.

Corresponding authors

Correspondence to Wen-I. Lee or Jing-Long Huang.

Ethics declarations

Ethics Approval

The Chang Gung Human Investigation Committee approved all methods and all experimental protocols used in this study, and informed consent was obtained from the patients’ parents or guardians.

Consent to Participate

Written informed consent was obtained from all individual participants included in the study.

Consent for Publication

The authors affirm that human research participants provided informed consent for publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 165 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, WI., Chen, CC., Chen, SH. et al. Clinical Features and Genetic Analysis of Taiwanese Primary Immunodeficiency Patients with Prolonged Diarrhea and Monogenetic Inflammatory Bowel Disease. J Clin Immunol 43, 1455–1467 (2023). https://doi.org/10.1007/s10875-023-01503-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-023-01503-w

Keywords

Navigation