Skip to main content

Advertisement

Log in

Hyper-IgE Syndrome due to an Elusive Novel Intronic Homozygous Variant in DOCK8

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Rare, biallelic loss-of-function mutations in DOCK8 result in a combined immune deficiency characterized by severe and recurrent cutaneous infections, eczema, allergies, and susceptibility to malignancy, as well as impaired humoral and cellular immunity and hyper-IgE. The advent of next-generation sequencing technologies has enabled the rapid molecular diagnosis of rare monogenic diseases, including inborn errors of immunity. These advances have resulted in the implementation of gene-guided treatments, such as hematopoietic stem cell transplant for DOCK8 deficiency. However, putative disease-causing variants revealed by next-generation sequencing need rigorous validation to demonstrate pathogenicity. Here, we report the eventual diagnosis of DOCK8 deficiency in a consanguineous family due to a novel homozygous intronic deletion variant that caused aberrant exon splicing and subsequent loss of expression of DOCK8 protein. Remarkably, the causative variant was not initially detected by clinical whole-genome sequencing but was subsequently identified and validated by combining advanced genomic analysis, RNA-seq, and flow cytometry. This case highlights the need to adopt multipronged confirmatory approaches to definitively solve complex genetic cases that result from variants outside protein-coding exons and conventional splice sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Materials

Available upon request to the corresponding author.

Code Availability

Not applicable.

References

  1. Tangye SG, Bucciol G, Casas-Martin J, Pillay B, Ma CS, Moens L, et al. Human inborn errors of the actin cytoskeleton affecting immunity: way beyond WAS and WIP. Immunol Cell Biol. 2019;97(4):389–402. https://doi.org/10.1111/imcb.12243.

    Article  PubMed  Google Scholar 

  2. Chen Y, Chen Y, Yin W, Han H, Miller H, Li J, et al. The regulation of DOCK family proteins on T and B cells. J Leukoc Biol. 2021;109(2):383–94. https://doi.org/10.1002/JLB.1MR0520-221RR.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Q, Davis JC, Lamborn IT, Freeman AF, Jing H, Favreau AJ, et al. Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med. 2009;361(21):2046–55. https://doi.org/10.1056/NEJMoa0905506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Engelhardt KR, McGhee S, Winkler S, Sassi A, Woellner C, Lopez-Herrera G, et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol. 2009;124(6):1289-302 e4. https://doi.org/10.1016/j.jaci.2009.10.038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Su HC, Jing H, Angelus P, Freeman AF. Insights into immunity from clinical and basic science studies of DOCK8 immunodeficiency syndrome. Immunol Rev. 2019;287(1):9–19. https://doi.org/10.1111/imr.12723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang Q, Davis JC, Dove CG, Su HC. Genetic, clinical, and laboratory markers for DOCK8 immunodeficiency syndrome. Dis Markers. 2010;29(3–4):131–9. https://doi.org/10.3233/DMA-2010-0737.

    Article  PubMed  Google Scholar 

  7. Aydin SE, Kilic SS, Aytekin C, Kumar A, Porras O, Kainulainen L, et al. DOCK8 deficiency: clinical and immunological phenotype and treatment options — a review of 136 patients. J Clin Immunol. 2015;35(2):189–98. https://doi.org/10.1007/s10875-014-0126-0.

    Article  CAS  PubMed  Google Scholar 

  8. Engelhardt KR, Gertz ME, Keles S, Schaffer AA, Sigmund EC, Glocker C, et al. The extended clinical phenotype of 64 patients with dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol. 2015;136(2):402–12. https://doi.org/10.1016/j.jaci.2014.12.1945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Al-Herz W, Chu JI, van der Spek J, Raghupathy R, Massaad MJ, Keles S, et al. Hematopoietic stem cell transplantation outcomes for 11 patients with dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol. 2016;138(3):852-9 e3. https://doi.org/10.1016/j.jaci.2016.02.022.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Aydin SE, Freeman AF, Al-Herz W, Al-Mousa HA, Arnaout RK, Aydin RC, et al. Hematopoietic stem cell transplantation as treatment for patients with DOCK8 deficiency. J Allergy Clin Immunol Pract. 2019;7(3):848–55. https://doi.org/10.1016/j.jaip.2018.10.035.

    Article  PubMed  Google Scholar 

  11. Pillay BA, Avery DT, Smart JM, Cole T, Choo S, Chan D, et al. Hematopoietic stem cell transplant effectively rescues lymphocyte differentiation and function in DOCK8-deficient patients. JCI Insight. 2019;5. https://doi.org/10.1172/jci.insight.127527.

  12. Haskologlu S, Kostel Bal S, Islamoglu C, Aytekin C, Guner S, Sevinc S, et al. Clinical, immunological features and follow up of 20 patients with dedicator of cytokinesis 8 (DOCK8) deficiency. Pediatr Allergy Immunol. 2020;31(5):515–27. https://doi.org/10.1111/pai.13236.

    Article  CAS  PubMed  Google Scholar 

  13. Chinn IK, Chan AY, Chen K, Chou J, Dorsey MJ, Hajjar J, et al. Diagnostic interpretation of genetic studies in patients with primary immunodeficiency diseases: a working group report of the Primary Immunodeficiency Diseases Committee of the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol. 2020;145(1):46–69. https://doi.org/10.1016/j.jaci.2019.09.009.

    Article  CAS  PubMed  Google Scholar 

  14. Pillay BA, Fusaro M, Gray PE, Statham AL, Burnett L, Bezrodnik L, et al. Somatic reversion of pathogenic DOCK8 variants alters lymphocyte differentiation and function to effectively cure DOCK8 deficiency. J Clin Invest. 2021;131(3). https://doi.org/10.1172/JCI142434.

  15. Randall KL, Chan SS, Ma CS, Fung I, Mei Y, Yabas M, et al. DOCK8 deficiency impairs CD8 T cell survival and function in humans and mice. J Exp Med. 2011;208(11):2305–20. https://doi.org/10.1084/jem.20110345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Avery DT, Kane A, Nguyen T, Lau A, Nguyen A, Lenthall H, et al. Germline-activating mutations in PIK3CD compromise B cell development and function. J Exp Med. 2018;215(8):2073–95. https://doi.org/10.1084/jem.20180010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pai SY, de Boer H, Massaad MJ, Chatila TA, Keles S, Jabara HH, et al. Flow cytometry diagnosis of dedicator of cytokinesis 8 (DOCK8) deficiency. J Allergy Clin Immunol. 2014;134(1):221–3. https://doi.org/10.1016/j.jaci.2014.02.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tangye SG, Pillay B, Randall KL, Avery DT, Phan TG, Gray P, et al. Dedicator of cytokinesis 8-deficient CD4(+) T cells are biased to a TH2 effector fate at the expense of TH1 and TH17 cells. J Allergy Clin Immunol. 2017;139(3):933–49. https://doi.org/10.1016/j.jaci.2016.07.016.

    Article  CAS  PubMed  Google Scholar 

  19. Matthijs G, Souche E, Alders M, Corveleyn A, Eck S, Feenstra I, et al. Guidelines for diagnostic next-generation sequencing. Eur J Hum Genet. 2016;24(1):2–5. https://doi.org/10.1038/ejhg.2015.226.

    Article  CAS  PubMed  Google Scholar 

  20. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15. https://doi.org/10.1038/s41587-019-0201-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019;47(D1):D766–73. https://doi.org/10.1093/nar/gky955.

    Article  CAS  PubMed  Google Scholar 

  23. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–6. https://doi.org/10.1038/nbt.1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Brennan P. drawProteins: a Bioconductor/R package for reproducible and programmatic generation of protein schematics. F1000Res. 2018;7:1105. https://doi.org/10.12688/f1000research.14541.1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021. https://doi.org/10.1038/s41586-021-03819-2.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ma CS, Tangye SG. Flow cytometric-based analysis of defects in lymphocyte differentiation and function due to inborn errors of immunity. Front Immunol. 2019;10:2108. https://doi.org/10.3389/fimmu.2019.02108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crequer A, Troeger A, Patin E, Ma CS, Picard C, Pedergnana V, et al. Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections. J Clin Invest. 2012;122(9):3239–47. https://doi.org/10.1172/JCI62949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moran I, Nguyen A, Khoo WH, Butt D, Bourne K, Young C, et al. Memory B cells are reactivated in subcapsular proliferative foci of lymph nodes. Nat Commun. 2018;9(1):3372. https://doi.org/10.1038/s41467-018-05772-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bucciol G, Pillay B, Casas-Martin J, Delafontaine S, Proesmans M, Lorent N, et al. Systemic Inflammation and myelofibrosis in a patient with Takenouchi-Kosaki Syndrome due to CDC42 Tyr64Cys mutation. J Clin Immunol. 2020;40(4):567–70. https://doi.org/10.1007/s10875-020-00742-5.

    Article  PubMed  Google Scholar 

  30. Edwards ESJ, Bier J, Cole TS, Wong M, Hsu P, Berglund LJ, et al. Activating PIK3CD mutations impair human cytotoxic lymphocyte differentiation and function and EBV immunity. J Allergy Clin Immunol. 2019;143(1):276-91 e6. https://doi.org/10.1016/j.jaci.2018.04.030.

    Article  CAS  PubMed  Google Scholar 

  31. Jing H, Zhang Q, Zhang Y, Hill BJ, Dove CG, Gelfand EW, et al. Somatic reversion in dedicator of cytokinesis 8 immunodeficiency modulates disease phenotype. J Allergy Clin Immunol. 2014;133(6):1667–75. https://doi.org/10.1016/j.jaci.2014.03.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Picard C, Bobby Gaspar H, Al-Herz W, Bousfiha A, Casanova JL, Chatila T, et al. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol. 2018;38(1):96–128. https://doi.org/10.1007/s10875-017-0464-9.

    Article  PubMed  Google Scholar 

  33. Phan TG, Gray PE, Wong M, Macintosh R, Burnett L, Tangye SG, et al. The Clinical Immunogenomics Research Consortium Australasia (CIRCA): a distributed network model for genomic healthcare delivery. J Clin Immunol. 2020;40(5):763–6. https://doi.org/10.1007/s10875-020-00787-6.

    Article  PubMed  Google Scholar 

  34. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Human inborn errors of immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2020;40(1):24–64. https://doi.org/10.1007/s10875-019-00737-x.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Minoche AE, Lundie B, Peters GB, Ohnesorg T, Pinese M, Thomas DM, et al. ClinSV: clinical grade structural and copy number variant detection from whole genome sequencing data. Genome Med. 2021;13(1):32. https://doi.org/10.1186/s13073-021-00841-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ito K, Patel PN, Gorham JM, McDonough B, DePalma SR, Adler EE, et al. Identification of pathogenic gene mutations in LMNA and MYBPC3 that alter RNA splicing. Proc Natl Acad Sci U S A. 2017;114(29):7689–94. https://doi.org/10.1073/pnas.1707741114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ribeiro M, Furtado M, Martins S, Carvalho T, Carmo-Fonseca M. RNA splicing defects in hypertrophic cardiomyopathy: implications for diagnosis and therapy. Int J Mol Sci. 2020;21(4):1329. https://doi.org/10.3390/ijms21041329.

    Article  CAS  PubMed Central  Google Scholar 

  38. Xu X, Han L, Zhao G, Xue S, Gao Y, Xiao J, et al. LRCH1 interferes with DOCK8-Cdc42-induced T cell migration and ameliorates experimental autoimmune encephalomyelitis. J Exp Med. 2017;214(1):209–26. https://doi.org/10.1084/jem.20160068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Meyts I, Bosch B, Bolze A, Boisson B, Itan Y, Belkadi A, et al. Exome and genome sequencing for inborn errors of immunity. J Allergy Clin Immunol. 2016;138(4):957–69. https://doi.org/10.1016/j.jaci.2016.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. The ever-increasing array of novel inborn errors of immunity: an interim update by the IUIS Committee. J Clin Immunol. 2021;41(3):666–79. https://doi.org/10.1007/s10875-021-00980-1.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Stray-Pedersen A, Sorte HS, Samarakoon P, Gambin T, Chinn IK, Coban Akdemir ZH, et al. Primary immunodeficiency diseases: genomic approaches delineate heterogeneous Mendelian disorders. J Allergy Clin Immunol. 2017;139(1):232–45. https://doi.org/10.1016/j.jaci.2016.05.042.

    Article  PubMed  Google Scholar 

  42. Sullivan KE. The scary world of variants of uncertain significance (VUS): a hitchhiker’s guide to interpretation. J Allergy Clin Immunol. 2021;147(2):492–4. https://doi.org/10.1016/j.jaci.2020.06.011.

    Article  CAS  PubMed  Google Scholar 

  43. Weck KE. Interpretation of genomic sequencing: variants should be considered uncertain until proven guilty. Genet Med. 2018;20(3):291–3. https://doi.org/10.1038/gim.2017.269.

    Article  PubMed  Google Scholar 

  44. Eldomery MK, Coban-Akdemir Z, Harel T, Rosenfeld JA, Gambin T, Stray-Pedersen A, et al. Lessons learned from additional research analyses of unsolved clinical exome cases. Genome Med. 2017;9(1):26. https://doi.org/10.1186/s13073-017-0412-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang Z, Xin D, Wang P, Zhou L, Hu L, Kong X, et al. Noisy splicing, more than expression regulation, explains why some exons are subject to nonsense-mediated mRNA decay. BMC Biol. 2009;7:23. https://doi.org/10.1186/1741-7007-7-23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khourieh J, Rao G, Habib T, Avery DT, Lefevre-Utile A, Chandesris MO, et al. A deep intronic splice mutation of STAT3 underlies hyper IgE syndrome by negative dominance. Proc Natl Acad Sci U S A. 2019;116(33):16463–72. https://doi.org/10.1073/pnas.1901409116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boisson B, Honda Y, Ajiro M, Bustamante J, Bendavid M, Gennery AR, et al. Rescue of recurrent deep intronic mutation underlying cell type-dependent quantitative NEMO deficiency. J Clin Invest. 2019;129(2):583–97. https://doi.org/10.1172/JCI124011.

    Article  PubMed  Google Scholar 

  48. Khan S, Kuruvilla M, Hagin D, Wakeland B, Liang C, Vishwanathan K, et al. RNA sequencing reveals the consequences of a novel insertion in dedicator of cytokinesis-8. J Allergy Clin Immunol. 2016;138(1):289-92 e6. https://doi.org/10.1016/j.jaci.2015.11.033.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are extremely thankful to the patients and their families for participating in this study. We also thank Angela Wang (NIAID, NIH) for her regulatory assistance; the Clinical Trials & Biorepository Team, St Vincent’s Centre for Applied Medical Research (St Vincent’s Hospital, Darlinghurst, NSW Australia), for biobanking; and Dr. Karen Enthoven (CIRCA) for project coordination. Computational work was performed using the high-performance computing resources of the Garvan Institute of Medical Research. Sanger sequencing was performed by Garvan Molecular Genetics and flow cytometry by the Garvan Flow facility.

Funding

This study was supported by the NHMRC of Australia (1060303), Office of Health and Medical Research of the NSW Government, the Jeffrey Modell Foundation, SPHERE Triple I Clinical Academic Group and UNSW Medicine Infection, Immunology and Inflammation Theme, the Ross Trust, and the John Brown Cook Foundation, and in part by the Intramural Research Program of the National Institute of Allergy and Infectious Diseases, NIH. S.G.T was a Principal Research Fellow (1042925) of the NHMRC and is currently a recipient of an NHMRC Leadership 3 Investigator Grant (1176665) and NHMRC program grant (1113904). C.S.M is supported by an Early-Mid Career Research Fellowship from the Ministry of Health of the New South Wales Government of Australia.

Author information

Authors and Affiliations

Authors

Contributions

SGT, PG, LB, and CSM conceived and designed the study; PG, BP, JYY, JR, WAF, SK, and CSM conducted experiments; DEC, AS, and JP provided patient care and data collection; JS and GU performed Ion Torrent, and HJ and HCS performed initial DOCK8 exon sequencing; SGT, PG, LB, and CSM supervised the study; SGT and CSM wrote drafts of the original and revised manuscripts; all authors contributed to the final version of the manuscript and approved submission of the final version.

Corresponding author

Correspondence to Cindy S. Ma.

Ethics declarations

Ethics Approval

This study was approved by the Sydney Local Health District RPAH Zone Human Research Ethics Committee and Research Governance Office, Royal Prince Alfred Hospital, Camperdown, NSW, Australia (Protocol X16-0210/LNR/16/RPAH/257); the South East Sydney Local Health District Human Research Ethics Committee, Prince of Wales/Sydney Children’s Hospital, Randwick, NSW, Australia (Protocol HREC/11/POWH/152); and NIAID (Protocol 06-I-0015). Written informed consent was obtained from participants or their guardians.

Consent to Participate

Written informed consent was obtained from participants or their guardians.

Consent for Publication

Patients signed informed consent regarding publishing their data.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tangye, S.G., Gray, P.E., Pillay, B.A. et al. Hyper-IgE Syndrome due to an Elusive Novel Intronic Homozygous Variant in DOCK8. J Clin Immunol 42, 119–129 (2022). https://doi.org/10.1007/s10875-021-01152-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-021-01152-x

Keywords

Navigation