Skip to main content

Advertisement

Log in

Late Onset Hypomorphic RAG2 Deficiency Presentation with Fatal Vaccine-Strain VZV Infection

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Purpose

Hypomorphic mutations in RAG1 and RAG2 are associated with significant clinical heterogeneity and symptoms of immunodeficiency or autoimmunity may be late in appearance. As a result, immunosuppressive medications may be introduced that can have life-threatening consequences. We describe a previously healthy 13-month-old girl presenting with rash and autoimmune hemolytic anemia, while highlighting the importance of vigilance and consideration of an underlying severe immunodeficiency disease prior to instituting immunosuppressive therapy.

Methods

Given clinical deterioration of the patient and a temporal association with recently administered vaccinations, virus genotyping was carried out via 4 real-time Forster Resonance Energy Transfer PCR protocols targeting vaccine-associated single nucleotide polymorphisms. Genomic DNA was extracted from whole blood and analyzed via the next-generation sequencing method of sequencing-by-synthesis. Immune function studies included immunophenotyping of peripheral blood lymphocytes, mitogen-induced proliferation and TLR ligand-induced production of TNFα. Analysis of recombination activity of wild-type and mutant RAG2 constructs was performed.

Results

Virus genotyping revealed vaccine-strain VZV, mumps, and rubella. Next-generation sequencing identified heterozygosity for RAG2 R73H and P180H mutations. Profound lymphopenia was associated with intense corticosteroid therapy, with some recovery after steroid reduction. Residual, albeit low, RAG2 protein activity was demonstrated.

Conclusions

Because of the association of RAG deficiency with late-onset presentation and autoimmunity, live virus vaccination and immunosuppressive therapies are often initiated and can result in negative consequences. Here, hypomorphic RAG2 mutations were linked to disseminated vaccine-strain virus infections following institution of corticosteroid therapy for autoimmune hemolytic anemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ACIP:

Advisory Committee on Immunization Practices

CMV:

Cytomegalovirus

Con A:

Concanavalin A

CVID:

Common variable immune deficiency

D:

Diversity

hCD4:

Human CD4

HSCT:

Hematopoietic stem cell transplantation

IVIG:

Intravenous immunoglobulin

J:

Joining

PHA:

Phytohemagglutinin

RAG:

Recombination-activating gene

SCID:

Severe combined immune deficiency

SD:

Standard deviation

TLR:

Toll-like receptor

TREC:

T cell receptor excision circle

V:

Variable

VZV:

Varicella zoster virus

References

  1. Hesslein DG, Schatz DG. Factors and forces controlling V(D)J recombination. Adv Immunol. 2001;78:169–232.

    Article  CAS  PubMed  Google Scholar 

  2. Kim MS, Lapkouski M, Yang W, Gellert M. Crystal structure of the V(D)J recombinase RAG1-RAG2. Nature. 2015;518:507–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Schwarz K, Gauss GH, Ludwig L, Pannicke U, Li Z, Lindner D, et al. RAG mutations in human B cell-negative SCID. Science. 1996;274:97–9.

    Article  CAS  PubMed  Google Scholar 

  4. Avila EM, Uzel G, Hsu A, Milner JD, Holland SM. Highly variable clinical phenotypes of hypomorphic RAG1 mutations. Pediatrics. 2010;126:1248–52.

    Article  Google Scholar 

  5. Villa A, Notarangelo LD, Roifman CM. Omenn syndrome: inflammation in leaky severe combined immunodeficiency. J Allergy Clin Immunol. 2008;122:1082–6.

    Article  CAS  PubMed  Google Scholar 

  6. de Villartay JP, Lim A, Al-Mousa H, Dupont S, Déchanet-Merville J, Coumau-Gatbois E, et al. A novel immunodeficiency associated with hypomorphic RAG1 mutations and CMV infection. J Clin Invest. 2005;115(11):3291–9.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Schuetz C, Huck K, Gudowius S, Megahed M, Feyen O, Hubner B, et al. An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med. 2008;358:2030–8.

    Article  CAS  PubMed  Google Scholar 

  8. De Ravin SS, Cowen EW, Zarember KA, Whiting-Theobald NL, Kuhns DB, Sandler NG, et al. Hypomorphic Rag mutations can cause destructive midline granulomatous disease. Blood. 2010;116:1263–71.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kuijpers TW, IJspeert H, van Leeuwen EM, Jansen MH, Hazenberg MD, Weijer KC, et al. Idiopathic CD4+ T lymphopenia without autoimmunity or granulomatous disease in the slipstream of RAG. Blood. 2011;117:5892–6.

    Article  CAS  PubMed  Google Scholar 

  10. Abraham RS, Recher M, Giliani S, Walter JE, Lee YN, Frugoni F, et al. Adult-onset manifestation of idiopathic T-cell lymphopenia due to a heterozygous RAG1 mutation. J Allergy Clin Immunol. 2013;131:1421–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Henderson LA, Frugoni F, Hopkins G, de Boer H, Pai SY, Lee YN, et al. Expanding the spectrum of recombination-activating gene 1 deficiency: a family with early-onset autoimmunity. J Allergy Clin Immunol. 2013;132:969–71.

    Article  CAS  PubMed  Google Scholar 

  12. Abolhassani H, Wang N, Aghamohammadi A, Rezaei N, Lee YN, Frugoni F, et al. A hypomorphic recombination-activating gene 1 (RAG1) mutation resulting in a phenotype resembling common variable immunodeficiency. J Allergy Clin Immunol. 2014;134:1375–80.

    Article  CAS  PubMed  Google Scholar 

  13. Kato T, Crestani E, Kamae C, Honma K, Yokosuka T, Ikegawa T, et al. RAG1 deficiency may present clinically as selective IgA deficiency. J Clin Immunol. 2015;35:280–8.

    Article  CAS  PubMed  Google Scholar 

  14. Lee YN, Frugoni F, Dobbs K, Walter JE, Giliani S, Gennery AR, et al. A systematic analysis of recombination activity and genotype-phenotype correlation in human recombination-activating gene 1 deficiency. J Allergy Clin Immunol. 2014;133:1099–108.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. IJspeert H, Driessen GJ, Moorhouse MJ, Hartwig NG, Wolska-Kusnierz B, Kalwak K, et al. Similar recombination-activating gene (RAG) mutations result in similar immunobiological effects but in different clinical phenotypes. J Allergy Clin Immunol. 2014;133:1124–33.

    Article  CAS  PubMed  Google Scholar 

  16. Smith C, Dutmer CM, Schmid DS, Bellini WJ, Gelfand EW, Asturias EJ. A toddler with rash, encephalopathy, and hemolytic anemia. J Pediatr Infect Dis. 2015. doi:10.1093/jpids/piv032.

    Google Scholar 

  17. Asai E, Wada T, Sakakibara Y, Toga A, Toma T, Shimizu T, et al. Analysis of mutations and recombination activity in RAG-deficient patients. Clin Immunol. 2011;138:172–7.

    Article  CAS  PubMed  Google Scholar 

  18. Sabry A, Hauk PJ, Jing H, Su HC, Stence NV, Mirsky DM, et al. Vaccine strain varicella-zoster virus-induced central nervous system vasculopathy as the presenting feature of DOCK8 deficiency. J Allergy Clin Immunol. 2014;133:1225–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Baker MW, Grossman WJ, Laessig RH, Hoffman GL, Brokopp CD, Kurtycz DF, et al. Development of a routine newborn screening protocol for severe combined immunodeficiency. J Allergy Clin Immunol. 2009;124:522–7.

    Article  PubMed  Google Scholar 

  20. Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312:729–38.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Kwan A, Puck JM. History and current status of newborn screening for severe combined immunodeficiency. Semin Perinatol. 2015;39:194–205.

    Article  PubMed  Google Scholar 

  22. Salt BH, Niemela JE, Pandey R, Hanson EP, Deering RP, Quinones R, et al. IKBKG (nuclear factor-kappa B essential modulator) mutation can be associated with opportunistic infection without impairing Toll-like receptor function. J Allergy Clin Immunol. 2008;121(4):976–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Chen K, Wu W, Mathew D, Zhang Y, Browne SK, Rosen LB, et al. Autoimmunity due to RAG deficiency and estimated disease incidence in RAG1/2 mutations. J Allergy Clin Immunol. 2014;133:880–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Wardemann H, Yurasov S, Schaefer A, Young JW, Meffre E, Nussenzweig MC. Predominant autoantibody production by early human B cell precursors. Science. 2003;301:1374–7.

    Article  CAS  PubMed  Google Scholar 

  25. Cassani B, Poliani PL, Moratto D, Sobacchi C, Marrella V, Imperatori L, et al. Defect of regulatory T cells in patients with Omenn syndrome. J Allergy Clin Immunol. 2010;125:209–16.

    Article  CAS  PubMed  Google Scholar 

  26. Dowell SF, Bresee JS. Severe varicella associated with steroid use. Pediatrics. 1993;92:223–8.

    CAS  PubMed  Google Scholar 

  27. Russell AF, Parrino J, Fisher Jr CL, Spieler W, Stek JE, Coll KE, et al. Safety, tolerability, and immunogenicity of zoster vaccine in subjects on chronic/maintenance corticosteroids. Vaccine. 2015;33:3129–34.

    Article  CAS  PubMed  Google Scholar 

  28. Leung J, Siegel S, Jones JF, Schulte C, Blog D, Schmid DS, et al. Fatal varicella due to the vaccine strain varicella-zoster virus. Hum Vaccin Immunother. 2014;10:146–9.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Schrauder A, Henke-Gendo C, Seidemann K, Sasse M, Cario G, Moericke A, et al. Varicella vaccination in a child with acute lymphoblastic leukaemia. Lancet. 2007;369:1232.

    Article  PubMed  Google Scholar 

  30. Woo EJ. Letter to the editor: fatal varicella due to the vaccine-strain varicella-zoster virus. Hum Vaccin Immunother. 2015;11:679.

    Article  PubMed  Google Scholar 

  31. Levy O, Orange JS, Hibberd P, Steinberg S, LaRussa P, Weinberg A, et al. Disseminated varicella infection due to the vaccine strain of varicella-zoster virus, in a patient with a novel deficiency in natural killer T cells. J Infect Dis. 2003;188:948–53.

    Article  PubMed  Google Scholar 

  32. Schuetz C, Neven B, Dvorak CC, Leroy S, Ege MJ, Pannicke U, et al. SCID patients with ARTEMIS vs RAG deficiencies following HCT: increased risk of late toxicity in ARTEMIS-deficient SCID. Blood. 2014;123:281–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin W. Gelfand.

Ethics declarations

Declaration of all Sources of Funding

C.D. was supported by a fellowship from Grifols. This work was partially supported by a grant from the National Institutes of Health (grant 5R01AI100887 to L.D.N.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NHLBI or the NIH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutmer, C.M., Asturias, E.J., Smith, C. et al. Late Onset Hypomorphic RAG2 Deficiency Presentation with Fatal Vaccine-Strain VZV Infection. J Clin Immunol 35, 754–760 (2015). https://doi.org/10.1007/s10875-015-0207-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-015-0207-8

Keywords

Navigation