Skip to main content

Advertisement

Log in

The Phenomenon of Spontaneous Genetic Reversions in the Wiskott-Aldrich Syndrome: A Report of the Workshop of the ESID Genetics Working Party at the XIIth Meeting of the European Society for Immunodeficiencies (ESID). Budapest, Hungary October 4–7, 2006

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

The Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency disease caused by mutations in the Wiskott-Aldrich Protein (WASP) gene, which typically leads to absent WASP protein expression in WAS leukocytes. However, some patients have been found with small populations of WASP-expressing cells caused by reverse or second-site mutations that allow protein expression. An international consortium was established to further investigate these phenomena. This paper summarizes data collected by this consortium that was presented at a workshop held during the XIIth Meeting of the European Society for Immunodeficiencies (ESID), October, 2006. WASP reversions were noted in approximately 11% of 272 patients tested. Many different cell lineages showed reversions. These data form the foundation for further investigation into this phenomenon, which has implications for therapy of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Ariga T, Kondoh T, Yamaguchi K, Yamada M, Sasaki S, Nelson DL, et al. Spontaneous in vivo reversion of an inherited mutation in the Wiskott-Aldrich syndrome. J Immunol 2001;166:5245–9.

    PubMed  CAS  Google Scholar 

  2. Wada T, Konno A, Schurman SH, Garabedian EK, Anderson SM, Kirby M, et al. Second-site mutation in the Wiskott-Aldrich syndrome (WAS) protein gene causes somatic mosaicism in two WAS siblings. J Clin Invest 2003;111:1389–97.

    Article  PubMed  CAS  Google Scholar 

  3. Yamada M, Ohtsu M, Kobayashi I, Kawamura N, Kobayashi K, Ariga T, et al. Flow cytometric analysis of Wiskott-Aldrich syndrome (WAS) protein in lymphocytes from WAS patients and their familial carriers. Blood 1999;93:756–7.

    PubMed  CAS  Google Scholar 

  4. Zhu Q, Zhang M, Blaese RM, Derry JM, Junker A, Francke U, et al. The Wiskott-Aldrich syndrome and X-linked congenital thrombocytopenia are caused by mutations of the same gene. Blood 1995;86:3797–804.

    PubMed  CAS  Google Scholar 

  5. Wada T, Schurman SH, Otsu M, Garabedian EK, Ochs HD, Nelson DL, et al. Somatic mosaicism in Wiskott-Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc Natl Acad Sci U S A 2001;98:8697–702.

    Article  PubMed  CAS  Google Scholar 

  6. Jin Y, Mazza C, Christie JR, Giliani S, Fiorini M, Mella P, et al. Mutations of the Wiskott-Aldrich Syndrome Protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation. Blood 2004;104:4010–9.

    Article  PubMed  CAS  Google Scholar 

  7. Lutskiy MI, Beardsley DS, Rosen FS, Remold-O’Donnell E. Mosaicism of NK cells in a patient with Wiskott-Aldrich syndrome. Blood 2005;106:2815–7.

    Article  PubMed  CAS  Google Scholar 

  8. Wada T, Schurman SH, Jagadeesh GJ, Garabedian EK, Nelson DL, Candotti F. Multiple patients with revertant mosaicism in a single Wiskott-Aldrich syndrome family. Blood 2004;104:1270–2.

    Article  PubMed  CAS  Google Scholar 

  9. Du W, Kumaki S, Uchiyama T, Yachie A, Yeng Looi C, Kawai S, et al. A second-site mutation in the initiation codon of WAS (WASP) results in expansion of subsets of lymphocytes in an Wiskott-Aldrich syndrome patient. Hum Mutat 2006;27:370–5.

    Article  PubMed  CAS  Google Scholar 

  10. Hirschhorn R, Yang DR, Puck JM, Huie ML, Jiang CK, Kurlandsky LE. Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency. Nat Genet 1996;13:290–5.

    Article  PubMed  CAS  Google Scholar 

  11. Stephan V, Wahn V, Le Deist F, Dirksen U, Broker B, Muller-Fleckenstein I, et al. Atypical X-linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N Engl J Med 1996;335:1563–7.

    Article  PubMed  CAS  Google Scholar 

  12. Tone Y, Wada T, Shibata F, Toma T, Hashida Y, Kasahara Y, Koizumi S, et al. Somatic revertant mosaicism in a patient with leukocyte adhesion deficiency type 1. Blood 2007;109:1182–4.

    Article  PubMed  CAS  Google Scholar 

  13. Jain A, Ma CA, Liu S, Brown M, Cohen J, Strober W. Specific missense mutations in NEMO result in hyper-IgM syndrome with hypohydrotic ectodermal dysplasia. Nat Immunol 2001;2:223–8.

    Article  PubMed  CAS  Google Scholar 

  14. Nishikomori R, Akutagawa H, Maruyama K, Nakata-Hizume M, Ohmori K, Mizuno K, et al. X-linked ectodermal dysplasia and immunodeficiency caused by reversion mosaicism of NEMO reveals a critical role for NEMO in human T-cell development and/or survival. Blood 2004;103:4565–72.

    Article  PubMed  CAS  Google Scholar 

  15. Darling TN, Yee C, Bauer JW, Hintner H, Yancey KB. Revertant mosaicism: partial correction of a germ-line mutation in COL17A1 by a frame-restoring mutation. J Clin Invest 1999;103:1371–7.

    Article  PubMed  CAS  Google Scholar 

  16. Jonkman MF, Scheffer H, Stulp R, Pas HH, Nijenhuis M, Heeres K, et al. Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion. Cell 1997;88:543–51.

    Article  PubMed  CAS  Google Scholar 

  17. Lo Ten Foe JR, Kwee ML, Rooimans MA, Oostra AB, Veerman AJ, van Weel M, et al. Somatic mosaicism in Fanconi anemia: molecular basis and clinical significance. Eur J Hum Genet 1997;5:137–48.

    PubMed  CAS  Google Scholar 

  18. Waisfisz Q, Morgan NV, Savino M, de Winter JP, van Berkel CG, Hoatlin ME, et al. Spontaneous functional correction of homozygous fanconi anaemia alleles reveals novel mechanistic basis for reverse mosaicism. Nat Genet 1999;22:379–83.

    Article  PubMed  CAS  Google Scholar 

  19. Kvittingen EA, Rootwelt H, Berger R, Brandtzaeg P. Self-induced correction of the genetic defect in tyrosinemia type I. J Clin Invest 1994;94:1657–61.

    PubMed  CAS  Google Scholar 

  20. Kvittingen EA, Rootwelt H, Brandtzaeg P, Bergan A, Berger R. Hereditary tyrosinemia type I. Self-induced correction of the fumarylacetoacetase defect. J Clin Invest 1993;91:1816–21.

    PubMed  CAS  Google Scholar 

  21. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T lymphocyte-directed gene therapy for ADA- SCID: initial trial results after 4 years. Science 1995;270:475–80.

    Article  PubMed  CAS  Google Scholar 

  22. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000;288:669–72.

    Article  PubMed  CAS  Google Scholar 

  23. Candotti F, Facchetti F, Blanzuoli L, Stewart DM, Nelson DL, Blaese RM. Retrovirus-mediated WASP gene transfer corrects defective actin polymerization in B cell lines from Wiskott-Aldrich syndrome patients carrying ’null’ mutations. Gene Ther 1999;6:1170–4.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all those participating in the Working Party. Listed below are the participating groups and investigators (e-mail addresses are provided for those groups submitting sequence data):

Metabolism Branch, NCI, NIH, Bethesda, MD, USA—Donn Stewart, David Nelson

Genetics and Molecular Biology Branch, NHGRI, NIH, Bethesda, MD, USA—Fabio Candotti, fabio@mail.nih.gov

Department of Pediatrics, Hokkaido U., Sapporo, JP—Tadashi Ariga, Masafumi Yamada, tada-ari@med.hokudai.ac.jp

Center for Blood Research, Boston, MA, USA—Eileen Remold-O’Donnell, remold@cbr.med.harvard.edu

Department of Pediatrics, U. of Brescia, Brescia, IT—Silvia Giliani, Cinzia Mazza, Evelina Mazzolari, Lucia D. Notarangelo, Luigi D. Notarangelo, luigi.notarangelo@childrens.harvard.edu

Hospital Nacional de Pediatria “Profesor Dr. Juan P. Garrahan”, Buenos Aires, AR—Jorge Rossi, jrossi@garrahan.gov.ar

Department of Pediatrics, Hannover Medical School, Hannover, DE—Kaan Boztug, Christoph Klein, christophklein2007@googlemail.com

Institute of Child Health, London, UK—Adrian Thrasher, a.thrasher@ich.ucl.ac.uk

TIGET, HSR, Milano, IT—Anna Villa, Marita Bosticardo, anna.villa@itb.cnr.it

Moscow, RU—Anna Shcherbina, shcher26@hotmail.com

Department of Pediatrics, U. of Washington, Seattle, WA, USA—Hans Ochs, Hans.Ochs@seattlechildrens.org

Department of Pediatrics, Tohoku University School of Medicine, Sendai, JP—Yoji Sasahara, Satoru Kumaki, Shigeru Tsuchiya, kumakis@idac.tohoku.ac.jp

Department of Pediatrics, U. Ulm, Ulm, DE—Klaus Schwarz, Wilhelm Friedrich

Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA—Alexandra Filipovich

Hopital Necker-Enfant Malades, Paris, FR—Capucine Picard

Department of Pediatrics, Kanazawa U., Kanazawa, JP—Tazio Wada

Department of Immunology, St Bartholomews and The Royal London School of Medicine and Dentistry, London, UK—Hiliary Longhurst

Department of Laboratory Medicine, Karolinska University Hospital in Huddinge, Stockholm, SE—Lennart Hammarstrom

Department of Hematology/Oncology Dr. von Haunersches Kinderspital, Munchen, DE—Michael Albert

Department of Allergy/Immunology, Rush U. Medical Center, Chicago, IL, USA—Anita Gewurz

Servicio de Immunologia, HHUU Virgen del Rocio, Sevilla, SP—Berta Sanchez

Immunology Unit, Hospital Vall d’Hebron, Barcelona, SP—Teresa Espanol

The Queen Silvia Children’s Hospital, Goteborg, SE—Anders Fasth

Department of Immunology, St Bartholomews and The Royal London School of Medicine and Dentistry, London, UK—Hiliary Longhurst

Pediatric Immunology, UMCU, Utrecht, NL—NM Wulffraat

Department of Clinical Immunology and Allerfology, St. Anne’s U. Hospital, Brno, CZ—Jiri Lizman

Department of Pediatrics, U. Tennessee, Memphis, TN, USA—M. E. Conley

Pediatric Allergy/Immunology Associates PA, Dallas, TX, USA—Richard Wasserman

Division of Clinical Immunology, Mount Sinai School of Medicine, New York, NY, USA—Charlotte Cunningham-Rundles

Department of Pediatrics, Uludag U. Medical Faculty, Bursa, TR—Sara Sebnem Kilic

Laboratory of Medical Investigation in Dermatology and Immunodeficiencies, U. Sao Paulo School of Medicine, Sao Paulo, BR—Dewton de Morales Vasconcelos

Developmental Medicine Unit, School of Medicine U. of Wales, Swansea, UK—Gareth Morgan

Histocompatibility Laboratory, Children’s Memorial Health Institute, Warsaw, PL—Barbara Piatosa

Department of Immunology and Pediatric Rheumatology, Hospital Nacional de Ninos “Dr. Carlos Saenz Herrera”, San Jose, CR—Oscar Porras

Department of Pediatrics, U. of Milan, Milano, IT—Rosa Maria Dellepiane

Diskapi Children’s Hospital, Ankara, TR—Ayse Metin

Pediatric Department, C.H.C Espérance Montegnée (Liège), BE—Pierre Philippet

Department of Pediatrics, U. Bari, Bari, IT—Martire Baldassarre

Pediatric Immunology Laboratory, Hacettepe U., Children’s Hospital, Ankara, TR —Ozden Sanal

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donn M. Stewart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, D.M., Candotti, F. & Nelson, D.L. The Phenomenon of Spontaneous Genetic Reversions in the Wiskott-Aldrich Syndrome: A Report of the Workshop of the ESID Genetics Working Party at the XIIth Meeting of the European Society for Immunodeficiencies (ESID). Budapest, Hungary October 4–7, 2006. J Clin Immunol 27, 634–639 (2007). https://doi.org/10.1007/s10875-007-9121-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-007-9121-z

Keywords

Navigation