Skip to main content
Log in

Insignificant impact of freezing and compaction on iron solubility in natural snow

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

To explore the freezing effect on iron (Fe) solubility in natural environments, especially in Polar regions, event based freshly fallen snow samples were collected at Newark, New Jersey on the US East Coast for two consecutive winter seasons (2014–2015 and 2015–2016). These samples were analyzed for the concentrations of soluble iron (Fesol) using UV-Vis Spectroscopy and filterable iron (Fefil) and total iron (Fetot) using Atomic Absorption Spectroscopy. The average fractional solubility of the Fesol (the portion that passes through a 0.22 μm pore-size filter) with respect to the total Fe in the samples was 23.3 ± 12.2%, with the majority of the soluble Fe being present as Fe(III). Approximately 48.5% of the total Fe existed as Fefil (the portion that passes through 0.45 μm pore size filter media). No significant correlation was found between the soluble ionic species and soluble Fe. Six snow events were kept frozen for 10 days, and analyzed in periodic intervals to study the post-freezing modification in Fe solubility. Events 1 and 2 showed increasing trend in the soluble Fe concentrations; however, the events 5, 6, 7, and 8 showed no noticeable increments. The pattern shown in Events 1 and 2 is associated with high fraction of Fefil and one unit pH drop, suggesting that the freeze-induced modification in Fe solubility could be linked with the amount of Fefil and the acidity change in the samples. To further investigate the freeze-induced compaction of particles, samples from three events 6, 7, and 10 were analyzed by SEM-STEM-EDS microscopy, and the results showed that due to freezing, in general, the particles in the ice-melt counterparts tend to compact and cluster and form larger aggregates compared to the particles in snow-melt. These results show, despite the freeze-induced compaction in snow was observed from STEM images, the snow freezing might not have significant effect in increasing Fe solubility from materials in the snow. These results further suggest that freezing process with fresh snow in high-latitude regions may not impose significant modification on Fe solubility in snow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barrie, L., Bottenheim, J., Schnell, R., Crutzen, P., Rasmussen, R.: Ozone destruction and photochemical reactions at polar sunrise in the lower Arctic atmosphere. Nature. 334(6178), 138–141 (1988)

    Article  Google Scholar 

  • Behra, P., Sigg, L.: Evidence for redox cycling of iron in atmospheric water droplets. Nature. 344(6265), 419–421 (1990)

    Article  Google Scholar 

  • Betterton, E.A., Anderson, D.J.: Autoxidation of N (III), S (IV), and other species in frozen solution–A possible pathway for enhanced chemical transformation in freezing systems. J. Atmos. Chem. 40(2), 171–189 (2001)

    Article  Google Scholar 

  • Bintanja, R., Van Oldenborgh, G., Drijfhout, S., Wouters, B., Katsman, C.: Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. Nat. Geosci. 6(5), 376–379 (2013)

    Article  Google Scholar 

  • Boyle, E.A., Bergquist, B.A., Kayser, R.A., Mahowald, N.: Iron, manganese, and lead at Hawaii Ocean time-series station ALOHA: temporal variability and an intermediate water hydrothermal plume. Geochim. Cosmochim. Acta. 69(4), 933–952 (2005)

    Article  Google Scholar 

  • Bronshteyn, V.L., Chernov, A.A.: Freezing potentials arising on solidification of dilute aqueous solutions of electrolytes. J. Cryst. Growth. 112(1), 129–145 (1991)

    Article  Google Scholar 

  • Chen, H., Grassian, V.H.: Iron dissolution of dust source materials during simulated acidic processing: the effect of sulfuric, acetic, and oxalic acids. Environ. Sci. Technol. 47(18), 10312–10321 (2013)

    Google Scholar 

  • Chen, Y., Tovar-Sanchez, A., Siefert, R.L., Sañudo-Wilhelmy, S.A., Zhuang, G.: Luxury uptake of aerosol iron by Trichodesmium in the western tropical North Atlantic. Geophys. Res. Lett. 38(18), (2011)

    Article  Google Scholar 

  • Christopher, S.A., Chou, J., Zhang, J., Li, X., Berendes, T., Welch, R.M.: Shortwave direct radiative forcing of biomass burning aerosols estimated using VIRS and CERES data. Geophys. Res. Lett. 27(15), 2197–2200 (2000)

    Article  Google Scholar 

  • Clarke, A.D., Noone, K.J.: Soot in the Arctic snowpack: a cause for perturbations in radiative transfer. Atmos. Environ. (1967). 19(12), 2045–2053 (1985)

    Article  Google Scholar 

  • Colbeck, S.: An overview of seasonal snow metamorphism. Rev. Geophys. 20(1), 45–61 (1982)

    Article  Google Scholar 

  • Colbeck, S.: Snow particle morphology in the seasonal snow cover. Bull. Am. Meteorol. Soc. 64(6), 602–609 (1983)

    Article  Google Scholar 

  • Crawford, I., Möhler, O., Schnaiter, M., Saathoff, H., Liu, D., McMeeking, G., Linke, C., Flynn, M., Bower, K., Connolly, P.: Studies of propane flame soot acting as heterogeneous ice nuclei in conjunction with single particle soot photometer measurements. Atmos. Chem. Phys. 11(18), 9549–9561 (2011)

    Article  Google Scholar 

  • Dasch, J.M., Wolff, G.T.: Trace inorganic species in precipitation and their potential use in source apportionment studies. Water Air Soil Pollut. 43(3), 401–412 (1989)

    Google Scholar 

  • Domine, F., Taillandier, A., Houdier, S., Parrenin, F., Simpson, W.R., Douglas, T.A.: Interactions between snow metamorphism and climate: physical and chemical aspects. Special Publication-Royal Soc. Chem. 311, 27 (2006)

    Google Scholar 

  • Duce, R.A., Tindale, N.W.: Atmospheric transport of iron and its deposition in the ocean. Limnol. Oceanogr. 36(8), 1715–1726 (1991)

    Article  Google Scholar 

  • Edwards, R., Sedwick, P.: Iron in east Antarctic snow: implications for atmospheric iron deposition and algal production in Antarctic waters. Geophys. Res. Lett. 28(20), 3907–3910 (2001)

    Article  Google Scholar 

  • Erel, Y., Pehkonen, S.O., Hoffmann, M.R.: Redox chemistry of iron in fog and stratus clouds. J. Geophys. Res.-Atmos. 98(D10), 18423–18434 (1993)

    Article  Google Scholar 

  • Falkowski, P.G.: Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature. 387(6630), 272–275 (1997)

    Article  Google Scholar 

  • Ferrari, C.P., Padova, C., Faïn, X., Gauchard, P.-A., Dommergue, A., Aspmo, K., Berg, T., Cairns, W., Barbante, C., Cescon, P.: Atmospheric mercury depletion event study in Ny-Alesund (Svalbard) in spring 2005. Deposition and transformation of Hg in surface snow during springtime. Sci. Total Environ. 397(1), 167–177 (2008)

    Article  Google Scholar 

  • Foster, K.L., Plastridge, R.A., Bottenheim, J.W., Shepson, P.B., Finlayson-Pitts, B.J., Spicer, C.W.: The role of Br2 and BrCl in surface ozone destruction at polar sunrise. Science. 291(5503), 471–474 (2001)

    Article  Google Scholar 

  • Franz, T.P., Eisenreich, S.J.: Snow scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in Minnesota. Environ. Sci. Technol. 32(12), 1771–1778 (1998)

    Article  Google Scholar 

  • Fung, I.Y., Meyn, S.K., Tegen, I., Doney, S.C., John, J.G., Bishop, J.K.: Iron supply and demand in the upper ocean. Glob. Biogeochem. Cycles. 14(1), 281–295 (2000)

    Article  Google Scholar 

  • Gao, Y., Kaufman, Y., Tanre, D., Kolber, D., Falkowski, P.: Seasonal distributions of aeolian iron fluxes to the global ocean. Geophys. Res. Lett. 28(1), 29–32 (2001)

    Article  Google Scholar 

  • Gao, Y., Xu, G., Zhan, J., Zhang, J., Li, W., Lin, Q., Chen, L., Lin, H.: Spatial and particle size distributions of atmospheric dissolvable iron in aerosols and its input to the Southern Ocean and coastal East Antarctica. J. Geophys. Res. Atmos. 118(22), 12,634–12,648 (2013)

    Article  Google Scholar 

  • Gorbunov, B., Baklanov, A., Kakutkina, N., Windsor, H., Toumi, R.: Ice nucleation on soot particles. J. Aerosol Sci. 32(2), 199–215 (2001)

    Article  Google Scholar 

  • Graedel, T., Mandich, M., Weschler, C.: Kinetic model studies of atmospheric droplet chemistry: 2. Homogeneous transition metal chemistry in raindrops. J. Geophys. Res. Atmos. 91(D4), 5205–5221 (1986)

    Article  Google Scholar 

  • Grannas, A.M., Bausch, A.R., Mahanna, K.M.: Enhanced aqueous photochemical reaction rates after freezing. J. Phys. Chem. A. 111(43), 11043–11049 (2007)

    Article  Google Scholar 

  • Grotti, M., Soggia, F., Ianni, C., Frache, R.: Trace metals distributions in coastal sea ice of Terra Nova Bay, Ross Sea, Antarctica. Antarct. Sci. 17(2), 289–300 (2005)

    Article  Google Scholar 

  • Gunz, D.W., Hoffmann, M.R.: Field investigations on the snow chemistry in central and southern California—I. Inorganic ions and hydrogen peroxide. Atmos. Environ. Part A. 24(7), 1661–1671 (1990)

    Article  Google Scholar 

  • Hallett, J.: The growth of ice crystals on freshly cleaved covellite surfaces. Philos. Mag. 6(69), 1073–1087 (1961)

    Article  Google Scholar 

  • Hawkings, J.R., Wadham, J.L., Tranter, M., Raiswell, R., Benning, L.G., Statham, P.J., Tedstone, A., Nienow, P., Lee, K., Telling, J.: Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, (2014)

  • Heaton, R.W., Rahn, K.A., Lowenthal, D.H.: Determination of trace elements, including regional tracers, in Rhode Island precipitation. Atmos. Environ. Part A. 24(1), 147–153 (1990)

    Article  Google Scholar 

  • Heimburger, A., Losno, R., Triquet, S.: Solubility of iron and other trace elements over the southern Indian Ocean. Biogeosci. Discuss. 10(3), 6065–6092 (2013)

    Article  Google Scholar 

  • Helmers, E., Schrems, O.: Wet deposition of metals to the tropical north and the South Atlantic Ocean. Atmos. Environ. 29(18), 2475–2484 (1995)

    Article  Google Scholar 

  • Herman, F., Gorham, E.: Total mineral material, acidity, Sulphur and nitrogen in rain and snow at Kentville, Nova Scotia. Tellus. 9(2), 180–183 (1957)

    Article  Google Scholar 

  • Hobbs, P. (1968). Snow: metamorphism of deposited snowsnow: metamorphism of deposited snow Geomorphology (pp. 1025–1028): Springer

  • Hofmann, H., Hoffmann, P., Lieser, K.: Transition metals in atmospheric aqueous samples, analytical determination and speciation. Fresenius J. Anal. Chem. 340(9), 591–597 (1991)

    Article  Google Scholar 

  • Jeong, D., Kim, K., Choi, W.: Accelerated dissolution of iron oxides in ice. Atmos. Chem. Phys. 12(22), 11125–11133 (2012)

    Article  Google Scholar 

  • Johnson, K.S., Coale, K.H., Elrod, V.A., Tindale, N.W.: Iron photochemistry in seawater from the equatorial Pacific. Mar. Chem. 46(4), 319–334 (1994)

    Article  Google Scholar 

  • Journet, E., Desboeufs, K.V., Caquineau, S., Colin, J.L.: Mineralogy as a critical factor of dust iron solubility. Geophys. Res. Lett. 35(7), (2008)

    Article  Google Scholar 

  • Kelly, T.J., Daum, P.H., Schwartz, S.E.: Measurements of peroxides in cloudwater and rain. J. Geophys. Res.-Atmos. 90(D5), 7861–7871 (1985)

    Article  Google Scholar 

  • Kieber, R.J., Williams, K., Willey, J.D., Skrabal, S., Avery, G.B.: Iron speciation in coastal rainwater: concentration and deposition to seawater. Mar. Chem. 73(2), 83–95 (2001)

    Article  Google Scholar 

  • Kieber, R. J., Willey, J. D., & Avery, G. B. (2003). Temporal variability of rainwater iron speciation at the Bermuda Atlantic time Series Station. J. Geophys. Res. Oceans, 108(C8), n/a-n/a. doi:https://doi.org/10.1029/2001JC001031

  • Kieber, R.J., Skrabal, S.A., Smith, B., Willey, J.D.: Organic complexation of Fe (II) and its impact on the redox cycling of iron in rain. Environ. Sci. Technol. 39(6), 1576–1583 (2005)

    Article  Google Scholar 

  • Kim, K., Choi, W., Hoffmann, M.R., Yoon, H.-I., Park, B.-K.: Photoreductive dissolution of iron oxides trapped in ice and its environmental implications. Environ. Sci. Technol. 44(11), 4142–4148 (2010)

    Article  Google Scholar 

  • Kumai, M.: Acidity of snow and its reduction by alkaline aerosols. Ann. Glaciol. 6(1), 92–94 (1985)

    Article  Google Scholar 

  • Kuroiwa, D. (1974). Metamorphism of Snow and Ice Sintering Observed by Time Lapse Cinephotomicrography. Paper presented at the Snow Mechanics Symposium

    Google Scholar 

  • Lalonde, J.D., Poulain, A.J., Amyot, M.: The role of mercury redox reactions in snow on snow-to-air mercury transfer. Environ. Sci. Technol. 36(2), 174–178 (2002)

    Article  Google Scholar 

  • Lannuzel, D., Schoemann, V., De Jong, J., Chou, L., Delille, B., Becquevort, S., Tison, J.-L.: Iron study during a time series in the western Weddell pack ice. Mar. Chem. 108(1), 85–95 (2008)

    Article  Google Scholar 

  • Liu, J., Chen, Z., Francis, J., Song, M., Mote, T., Hu, Y.: Has Arctic Sea ice loss contributed to increased surface melting of the Greenland ice sheet? J. Clim. 29(9), 3373–3386 (2016)

    Article  Google Scholar 

  • Liu, L., Kong, S., Zhang, Y., Wang, Y., Xu, L., Yan, Q., Lingaswamy, A., Shi, Z., Lv, S., Niu, H.: Morphology, composition, and mixing state of primary particles from combustion sources—crop residue, wood, and solid waste. Sci. Rep. 7, (2017)

  • Luo, C., Gao, Y.: Aeolian iron mobilisation by dust–acid interactions and their implications for soluble iron deposition to the ocean: a test involving potential anthropogenic organic acidic species. Environ. Chem. 7(2), 153–161 (2010)

    Article  Google Scholar 

  • Özsoy, T., Saydam, A.C.: Iron speciation in precipitation in the North-Eastern Mediterranean and its relationship with Sahara dust. J. Atmos. Chem. 40(1), 41–76 (2001)

    Article  Google Scholar 

  • Paramonov, M., Grönholm, T., Virkkula, A.: Below-cloud scavenging of aerosol particles by snow at an urban site in Finland. Boreal Environ. Res. 16, 304–320 (2011)

    Google Scholar 

  • Paris, R., Desboeufs, K.: Effect of atmospheric organic complexation on iron-bearing dust solubility. Atmos. Chem. Phys. 13(9), 4895–4905 (2013)

    Article  Google Scholar 

  • Paris, R., Desboeufs, K., Journet, E.: Variability of dust iron solubility in atmospheric waters: investigation of the role of oxalate organic complexation. Atmos. Environ. 45(36), 6510–6517 (2011)

    Article  Google Scholar 

  • Pehkonen, S.O., Siefert, R., Erel, Y., Webb, S., Hoffmann, M.R.: Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds. Environ. Sci. Technol. 27(10), 2056–2062 (1993)

    Article  Google Scholar 

  • Pike, S., Moran, S.: Trace elements in aerosol and precipitation at New Castle, NH, USA. Atmos. Environ. 35(19), 3361–3366 (2001)

    Article  Google Scholar 

  • Polyakov, I.V., Timokhov, L.A., Alexeev, V.A., Bacon, S., Dmitrenko, I.A., Fortier, L., Frolov, I.E., Gascard, J.-C., Hansen, E., Ivanov, V.V.: Arctic Ocean warming contributes to reduced polar ice cap. J. Phys. Oceanogr. 40(12), 2743–2756 (2010)

    Article  Google Scholar 

  • Sattler, B., Puxbaum, H., Psenner, R.: Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 28(2), 239–242 (2001)

    Article  Google Scholar 

  • Sedwick, P.N., DiTullio, G.R.: Regulation of algal blooms in Antarctic shelf waters by the release of iron from melting sea ice. Geophys. Res. Lett. 24(20), 2515–2518 (1997)

    Article  Google Scholar 

  • Sedwick, P.N., DiTullio, G.R., Mackey, D.J.: Iron and manganese in the Ross Sea, Antarctica: seasonal iron limitation in Antarctic shelf waters. J. Geophys. Res. Oceans. 105(C5), 11321–11336 (2000)

    Article  Google Scholar 

  • Sedwick, P.N., Sholkovitz, E.R., Church, T.M.: Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: evidence from the Sargasso Sea. Geochem. Geophys. Geosyst. 8(10), (2007)

    Article  Google Scholar 

  • Sempére, R., Kawamura, K.: Comparative distributions of dicarboxylic acids and related polar compounds in snow, rain and aerosols from urban atmosphere. Atmos. Environ. 28(3), 449–459 (1994)

    Article  Google Scholar 

  • Sholkovitz, E.R., Sedwick, P.N., Church, T.M., Baker, A.R., Powell, C.F.: Fractional solubility of aerosol iron: synthesis of a global-scale data set. Geochim. Cosmochim. Acta. 89, 173–189 (2012)

    Article  Google Scholar 

  • Siefert, R.L., Pehkonen, S.O., Erel, Y., Hoffmann, M.R.: Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids. Geochim. Cosmochim. Acta. 58(15), 3271–3279 (1994)

    Article  Google Scholar 

  • Siefert, R.L., Johansen, A.M., Hoffmann, M.R.: Chemical characterization of ambient aerosol collected during the southwest monsoon and intermonsoon seasons over the Arabian Sea: labile-Fe (II) and other trace metals. J. Geophys. Res.-Atmos. 104(D3), 3511–3526 (1999)

    Article  Google Scholar 

  • Song, F., Gao, Y.: Chemical characteristics of precipitation at metropolitan Newark in the US East Coast. Atmos. Environ. 43(32), 4903–4913 (2009)

    Article  Google Scholar 

  • Stookey, L.L.: Ferrozine---a new spectrophotometric reagent for iron. Anal. Chem. 42(7), 779–781 (1970)

    Article  Google Scholar 

  • Sunda, W. (2001). Bioavailability and bioaccumulation of Iron in the sea, in" The Biogeochemistry of Iron in Seawater", edited by DR Turner, K. Hunter: Wiley, Chinester, UK

  • Takenaka, N., Ueda, A., Daimon, T., Bandow, H., Dohmaru, T., Maeda, Y.: Acceleration mechanism of chemical reaction by freezing: the reaction of nitrous acid with dissolved oxygen. J. Phys. Chem. 100(32), 13874–13884 (1996)

    Article  Google Scholar 

  • Takenaka, N., Daimon, T., Ueda, A., Sato, K., Kitano, M., Bandow, H., Maeda, Y.: Fast oxidation reaction of nitrite by dissolved oxygen in the freezing process in the tropospheric aqueous phase. J. Atmos. Chem. 29(2), 135–150 (1998)

    Article  Google Scholar 

  • Walna, B., Kurzyca, I., Bednorz, E., Kolendowicz, L.: Fluoride pollution of atmospheric precipitation and its relationship with air circulation and weather patterns (Wielkopolski National Park, Poland). Environ. Monit. Assess. 185(7), 5497–5514 (2013)

    Article  Google Scholar 

  • Wells, M.L., Price, N.M., Bruland, K.W.: Iron chemistry in seawater and its relationship to phytoplankton: a workshop report. Mar. Chem. 48(2), 157–182 (1995)

    Article  Google Scholar 

  • Willey, J.D., Kieber, R.J., Williams, K.H., Crozier, J.S., Skrabal, S.A., Avery, G.B.: Temporal variability of iron speciation in coastal rainwater. J. Atmos. Chem. 37(2), 185–205 (2000)

    Article  Google Scholar 

  • Xia, L., Gao, Y.: Chemical composition and size distributions of coastal aerosols observed on the US East Coast. Mar. Chem. 119(1), 77–90 (2010)

    Article  Google Scholar 

  • Xu, G., Gao, Y., Lin, Q., Li, W., Chen, L.: Characteristics of water-soluble inorganic and organic ions in aerosols over the Southern Ocean and coastal East Antarctica during austral summer. J. Geophys. Res.-Atmos. 118(23), 13,303–13,318 (2013)

    Article  Google Scholar 

  • Zepp, R.G., Faust, B.C., Hoigne, J.: Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron (II) with hydrogen peroxide: the photo-Fenton reaction. Environ. Sci. Technol. 26(2), 313–319 (1992)

    Article  Google Scholar 

  • Zhiyuan, C., Shichang, K., Dahe, Q.: Seasonal features of aerosol particles recorded in snow from Mt. Qomolangma (Everest) and their environmental implications. J. Environ. Sci. 21(7), 914–919 (2009)

    Article  Google Scholar 

  • Zhu, X., Prospero, J.M., Savoie, D.L., Millero, F.J., Zika, R.G., Saltzman, E.S.: Photoreduction of iron (III) in marine mineral aerosol solutions. J. Geophys. Res.-Atmos. 98(D5), 9039–9046 (1993)

    Article  Google Scholar 

  • Zhuang, G., Duce, R.A., Kester, D.R.: The dissolution of atmospheric iron in surface seawater of the open ocean. J. Geophys. Res. Oceans. 95(C9), 16207–16216 (1990)

    Article  Google Scholar 

  • Zhuang, G., Yi, Z., Wallace, G.T.: Iron (II) in rainwater, snow, and surface seawater from a coastal environment. Mar. Chem. 50(1–4), 41–50 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by NSF OCE Award 1435871 and Rutgers TA-GA development grant. The authors are grateful to Alexei Khalizov and Evert Elzinga for helpful discussions. The authors are grateful to the anonymous reviewers for constructive comments that helped substantially improve this manuscript. The authors are also thankful to Tinayi Xu, Guojie Xu, Lasita Bhattacharya, and Songyun Fan for help with sample collection and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, P., Glamoclija, M. & Gao, Y. Insignificant impact of freezing and compaction on iron solubility in natural snow. J Atmos Chem 75, 247–270 (2018). https://doi.org/10.1007/s10874-018-9375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-018-9375-2

Keywords

Navigation