Skip to main content

Advertisement

Log in

In vivo evaluation of interactions between biphasic calcium phosphate (BCP)-niobium pentoxide (Nb2O5) nanocomposite and tissues using a rat critical-size calvarial defect model

  • Biocompatibility Studies
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Natural or synthetic biomaterials are increasingly being used to support bone tissue repair or substitution. The combination of natural calcium phosphates with biocompatible alloys is an important route towards the development of new biomaterials with bioperformance and mechanical responses to mimic those of human bones. This article evaluated the structural, physical, mechanical and biological properties of a new mechanical improved nanocomposite elaborated by association of fish biphasic calcium phosphate (BCP) and niobium pentoxide (Nb2O5). The nanocomposite (Nb-BCP) and the pure BCP, used as a positive control, were obtained by powder metallurgy. The density, porosity and microhardness were measured. The structural analysis was determined by X-ray diffraction (XRD) and the biological properties were studied in histological sections of critical size calvaria defects in rats, 7, 15, 30, 45 and 60 days after implantation of disks of both materials. Morphological description was made after scanning electron microscopy (SEM) and optical microscopy analysis. After sintering, the Nb-BCP nanocomposite presented four crystalline phases: 34.36% calcium niobate (CaNb2O6), 21.68% phosphorus niobium oxide (PNb9O25), 42.55% β-tricalcium phosphate (Ca3(PO4)2) and 1.31% of niobium pentoxide (Nb2O5) and exhibited increases of 17% in density, 66% in Vickers microhardness and 180% in compressive strength compared to pure BCP. In vivo study, showed biocompatibility, bioactivity and osteoconductivity similar to pure BCP. SEM showed the formation of globular accretions over the implanted nanocomposites, representing one of the stages of bone mineralization. In conclusion, the BCP and Nb2O5 formed a nanocomposite exhibiting characteristics that are desirable for a biomaterial, such as bioperformance, higher β-TCP percentage and improved physical and mechanical properties compared to pure BCP. These characteristics demonstrate the promise of this material for supporting bone regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Service RS. Tissue engineers build new bone. Science. 2000;289:1498–500.

    CAS  Google Scholar 

  2. Khan WS, Rayan F, Dhinsa BS, Marsh D. An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we? Stem Cells Int. 2012;2012:236231.

    Google Scholar 

  3. Henkel J, Woodruff MA, Epari DR, Steck R, Glatt V, Dickinson IC et al. Bone regeneration based on tissue engineering conceptions—a 21st century perspective. Bone Res. 2013;1:216–48.

    CAS  Google Scholar 

  4. Pacifici L, De Angelis F, Orefici A, Cielo A. Metals used in maxillofacial surgery. Oral Implantol. 2016;9(Suppl 1/2016 to N4/2016):107–11.

    CAS  Google Scholar 

  5. Hattar S, Asselin A, Greenspan D, Oboeuf M, Berdal A, Sautier JM. Potential of biomimetic surfaces to promote in vitro osteoblast-like cell differentiation. Biomaterials. 2005;26:839–48.

    CAS  Google Scholar 

  6. Long M, Rack HJ. Titanium alloys in total joint replacement—a materials science perspective. Biomaterials. 1998;19:1621–39.

    CAS  Google Scholar 

  7. Ramírez G, Rodil SE, Arzate H, Muhl S, Olaya LL. Niobium based coatings for dental implants. Appl Surf Sci. 2011;257:2555–9.

    Google Scholar 

  8. Okazak Y, Nishimura E, Nakada H, Kobayashi K. Surface analysis of Ti-15Zr-4Nb-4Ta alloy after implantation in rat tibia. Biomaterials. 2001;22:599–607.

    CAS  Google Scholar 

  9. Yamamoto A, Honma R, Sumita M, Hanawa T. Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J Biomed Mater Res A. 2004;68:244–56.

    Google Scholar 

  10. Rigo ECS, Oliveira LC, Santos LA, Bosch AO, Carrodeguas RG. Implantes metálicos recobertos com hidroxiapatita. Rev Bras Eng Biomed. 1999;15:21–29.

    Google Scholar 

  11. Legeros RZ. Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res. 2002;395:81–98.

    Google Scholar 

  12. Dorozhkin SV. Nanodimensional and nanocrystalline apatites and other calcium orthophosphates in biomedical engineering, biology and medicine. Materials. 2009;2:1975–2045.

    CAS  Google Scholar 

  13. Ono I, Tateshita T, Nakajima T. Evaluation of a high-density polyethylene fixing system for hydroxyapatite ceramic implants. Biomaterials. 2000;21:143–51.

    CAS  Google Scholar 

  14. Fleckenstein KB, Cuenin MF, Peacock ME, Billman MA, Swiec GD, Buxton TB et al. Effect of a hydroxyapatite tricalcium phosphate alloplast on osseous repair in the rat calvarium. J Periodontol. 2006;77:39–45.

    CAS  Google Scholar 

  15. Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry. J Pharm Bioallied Sci. 2013;5(Suppl 1):S125–7.

    Google Scholar 

  16. Dorozhkin SV. Calcium orthophosphate-based biocomposites and hybrid biomaterials. J Mat Sci. 2009;44:2343–87.

    CAS  Google Scholar 

  17. Liu B, Lun D. Current application of β-tricalcium phosphate composites in orthopaedics. Orthop Surg. 2012;4:139–44.

    Google Scholar 

  18. Arifin A, Sulong AB, Muhamad N, Syarif J, Ramli MI. Material processing of hydroxyapatite and titanium alloy (HA/Ti) composite as implant materials using powder metallurgy: a review. Mater and Design. 2014;55:165–75.

    CAS  Google Scholar 

  19. Aminzare M, Eskandari A, Baroonian MH, Berenov A, Razavi Hesabi Z, Taheri M et al. Hydroxyapatite nanocomposites: synthesis, sintering and mechanical properties. Ceram Int. 2013;39:2197–206.

    CAS  Google Scholar 

  20. Drdlik D, Slama M, Hadraba H, Cihlar J. Hydroxyapatite/zirconia-microfibre composites with controlled microporosity and fracture properties prepared by electrophoretic deposition. Ceram Int. 2015;41:11202–12.

    CAS  Google Scholar 

  21. Velten D, Eisenbarth E, Schanne N, Breme J. Biocompatible Nb2O5 thin films prepared by means of the sol-gel process. J Mater Sci Mater Med. 2004;15:457–61.

    CAS  Google Scholar 

  22. Li Y, Munir KS, Lin J, Wen C. Titanium-niobium pentoxide composites for biomedical applications. Bioact Mater. 2016;1:127–31.

    Google Scholar 

  23. Miyazaki T, Kim HM, Kokubo T, Ohtsuki C, Nakamura T. Apatite-forming ability of niobium oxide gels in a simulated body fluid. J Ceram Soc Jpn. 2001;109:929–33.

    CAS  Google Scholar 

  24. Bonadio TGM, Fiorentin ER, Candido AG, Miyahara RY, Freitas VF, Kiyochi HJ, Jr, Hernandes L, Rosso JM, Burato JA, Santos IA, Baesso ML, Weinand WR. Enhanced mechanical properties and osseointegration features of CaNb2O6-PNb9O25-Ca3(PO4)2triphasic nanostructured bioceramics derived by optimised sinterization of Nb2O5 and natural hydroxyapatite-β-tricalcium phosphate. Ceram Int. 2020;46(8):12837–45.

    CAS  Google Scholar 

  25. Demirkol N, Oktar FN, Kayali ES. Influence of niobium oxide on the mechanical properties of hydroxyapatite. Key Eng Mat. 2013;529–530:29–33.

    Google Scholar 

  26. Nascimento WJ, Bonadio TGM, Freitas VF, Weinand WR, Baesso ML, Lima WM. Nanostructured Nb2O5-natural hydroxyapatite formed by the mechanical alloying method: a bulk composite. Mater Chem Phys. 2011;130:84–9.

    CAS  Google Scholar 

  27. Bonadio TGM, Sato F, Medina AN, Weinand WR, Baesso ML, Lima WM. Bioactivity and structural properties of nanostructured bulk composites containing Nb2O5 and natural hydroxyapatite. J Appl Phys. 2013;113:1–8.

    Google Scholar 

  28. Cesar R, Leivas TP, Pereira CAM, Boffa RS, Guarniero R, Reiff RBM et al. Axial compressive strength of human vertebrae trabecular bones classified as normal, osteopenic and osteoporotic by quantitative ultrasonometry of calcaneus. Res Biomed Eng. 2017;33:91–6.

    Google Scholar 

  29. Havaldar R, Pilli SC, Putti BB. Insights into the effects of tensile and compressive loadings on human femur bone. Adv Biomed Res. 2020;3:1–5.

    Google Scholar 

  30. Karpiński R, Jaworski Ł, Czubacka P. The structural and mechanical properties of the bone. J Technol Exploit Mech Eng. 2017;3:43–50.

    Google Scholar 

  31. Coelho TM, Nogueira ES, Steimacher A, Medina AN, Weinand WR, Lima WM et al. Characterization of natural nanostructured hydroxyapatite obtained from the bones of Brazilian river fish. J Appl Phys. 2006;100:094312.

    Google Scholar 

  32. C773-88. Standard test method for compressive (crushing) strength of fired whiteware materials. West Conshohocken, United States: ASTM International; 2016. pp. 1–4.

    Google Scholar 

  33. C373-88. Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products. West Conshohocken, United Stated: ASTM International; 2006. pp. 1–2.

  34. Standard test method 42: Method for determination of density of compacted or sintered powder metallurgy (PM) products materials. Metal Powder Industries Federation (MPIF). Princeton, NJ, 2019.

  35. Oliver WC, Pharr GM. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res. 1992;7:1564–83.

    CAS  Google Scholar 

  36. Young RA. The Rietveld method. New York: Oxford University Press; 1995.

    Google Scholar 

  37. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clin Orthop Relat Res. 1986;205:299–308.

    Google Scholar 

  38. Powder Diffraction Files (PDF) of Joint Committee on Powder Diffraction Standards (JCPDS) database. Access through the website https://bdec.dotlib.com.br/ in Inorganic Crystal Structure Database (ICSD) through the agreement with the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) from Brazil.

  39. Strong E, Moulthrop T. Calvarial bone graft harvest: a new technique. Otolaryng Head Neck Surg. 2000;123:547–52.

    CAS  Google Scholar 

  40. Cameron JA, Milner DJ, Lee JS, Cheng J, Fang NX, Jasiuk IM. Employing the biology of successful fracture repair to heal critical size bone defects. Curr Top Microbiol Immunol. 2013;367:113–32.

    Google Scholar 

  41. Yetmez M. Sintering behavior and mechanical properties of biphasic calcium phosphate ceramics. Adv Mater Sc Eng. 2014;2014:1–5.

    Google Scholar 

  42. Demirkol N, Oktar FN, Kayali ES. Mechanical and microstructural properties of sheep hydroxyapatite (SHA)–niobium oxide composites. Acta Phys Pol A. 2012;121:274–6.

    CAS  Google Scholar 

  43. Oktar FN. Hydroxyapatite–TiO2 composites. Mater Lett. 2006;60:2207–10.

    CAS  Google Scholar 

  44. Roman-Lopez J, Correcher V, Garcia-Guinea J, Rivera T, Lozano IB. Thermal and electron stimulated luminescence of natural bones, commercial hydroxyapatite and collagen. Spectrochim Acta A. 2014;120:610–5.

    CAS  Google Scholar 

  45. Suryanarayana C. Mechanical alloying and milling. Prog Mater Sci. 2001;46:39–42.

    Google Scholar 

  46. Liu Q, Huang S, Matinlinna JP, Chen Z, Pan H. Insight into biological apatite: physiochemical properties and preparation approaches. BioMed Res Int. 2013;2013:1–13.

    Google Scholar 

  47. Liu DM, Troczynski T, Tseng WJ. Water-based sol-gel synthesis of hydroxyapatite: process development. Biomaterials. 2001;22:1721–30.

    CAS  Google Scholar 

  48. Qaisar SA, Bilton M, Wallace R, Brydson R, Brown AP, Ward M et al. Sol–gel synthesis and TEM-EDX characterization of hydroxiapatite nanoscale powders modified by Mg, Sr or Ti. J Phys: Conf Series. 2010;241:1–4.

    Google Scholar 

  49. Gutierres M, Lopes MA, Hussain NS, Cabral AT, Almeida L, Santos JD. Substitutos ósseos—conceitos gerais e estado actual. Arq Med. 2006;19:153–62.

    Google Scholar 

  50. Velard F, Braux J, Amedee J, Laquerriere P. Inflammatory cell response to calcium phosphate biomaterial particles: an overview. Acta Biomater. 2013;9:4956–63.

    CAS  Google Scholar 

  51. Bhumiratana S, Grayson WL, Castaneda A, Rockwood DN, Gil ES, Kaplan DL et al. Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds. Biomaterials. 2011;32:2812–20.

    CAS  Google Scholar 

  52. Galois L, Mainard D. Bone ingrowth into two porous ceramics with different pore sizes: an experimental study. Acta Orthop Belg. 2004;70:598–603.

    Google Scholar 

  53. Hench LL. Characterization of bioceramics. In: Hench LL, Wilson J, editors. An introduction to bioceramics. River Edge, EUA: World Scientific Publishing; 1993.

  54. Dupoirieux L, Pourquier D, Picot MC, Neves M. Comparative study of three different membranes for guided bone regeneration of rat cranial defects. Int J Oral Maxillofac Surg. 2001;30:58–62.

    CAS  Google Scholar 

  55. Braz F, Rahal SC, Rocha NS, Taga E, Biasi F. Emprego de matriz óssea orgânica bovina e hidroxiapatita no reparo de defeito induzido em crânio de ratos. Acta Cir Bras. 2003;18:19–24.

    Google Scholar 

  56. Moreschi E, Hernandes L, Dantas JA, da Silva MA, Casaroto AR, Bersani-Amado CA. Effect of dolomite on the repair of bone defects in rats: histological study. Histol Histopathol. 2010;25:1547–56.

    Google Scholar 

  57. Ko JCH. Investigating the process of cement line maturation on substrate surfaces with submicron under cuts. Toronto, Canada: University of Toronto; 2010.

    Google Scholar 

  58. Davies JE, Hosseini MM. Histodynamics of endosseus wound healing. In: Davies JE, editor. Bone engineering. Toronto: Em Squared Inc. pp. 1–14.

  59. von Ebner V. Ueber den feineren Bau der Knochensubstanz. Sber Akad Wiss Wien III. 1875;72:49–138.

    Google Scholar 

  60. Davies JE. In vitro modeling of the bone/implant interface. Anat Rec. 1996;245:426–45.

    CAS  Google Scholar 

  61. Zhou H, Chernecky R, Davies JE. Deposition of cement at reversal lines in rat femoral bone. J Bone Miner Res. 1994;9:367–74.

    CAS  Google Scholar 

  62. Orr RD, de Brujin JD, Davies JE. Scanning electron microscopy of the bone interface with titanium, titanium alloy and hydroxyapatite. Cells Mat. 1992;2:241–51.

    Google Scholar 

  63. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21:652–67.

    Google Scholar 

Download references

Acknowledgements

We are thankful to Brazilian Agencies CAPES, CNPq, FINEP, and Fundação Araucária for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luzmarina Hernandes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures involving the use of animals were approved (under number 079/2010) by the Ethics Committee on the Use of Animals (CEUA) of Universidade Estadual de Maringá, in accordance with the terms of article 8 of Federal Law 11794/2008.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiyochi Junior, H.d.J., Candido, A.G., Bonadio, T.G.M. et al. In vivo evaluation of interactions between biphasic calcium phosphate (BCP)-niobium pentoxide (Nb2O5) nanocomposite and tissues using a rat critical-size calvarial defect model. J Mater Sci: Mater Med 31, 71 (2020). https://doi.org/10.1007/s10856-020-06414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06414-5

Navigation