Skip to main content

Advertisement

Log in

Nano-porous anodic alumina: fundamentals and applications in tissue engineering

  • Tissue Engineering Constructs and Cell Substrates
  • Review Article
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Recently, nanomaterials have been widely utilized in tissue engineering applications due to their unique properties such as the high surface to volume ratio and diversity of morphology and structure. However, most methods used for the fabrication of nanomaterials are rather complicated and costly. Among different nanomaterials, anodic aluminum oxide (AAO) is a great example of nanoporous structures that can easily be engineered by changing the electrolyte type, anodizing potential, current density, temperature, acid concentration and anodizing time. Nanoporous anodic alumina has often been used for mammalian cell culture, biofunctionalization, drug delivery, and biosensing by coating its surface with biocompatible materials. Despite its wide application in tissue engineering, thorough in vivo and in vitro studies of AAO are still required to enhance its biocompatibility and thereby pave the way for its application in tissue replacements. Recognizing this gap, this review article aims to highlight the biomedical potentials of AAO for applications in tissue replacements along with the mechanism of porous structure formation and pore characteristics in terms of fabrication parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Montazerian H, Davoodi E, Asadi-Eydivand M, Kadkhodapour J, Solati-Hashjin M. Porous scaffold internal architecture design based on minimal surfaces: a compromise between permeability and elastic properties. Mater Des. 2017;126:98–114.

    CAS  Google Scholar 

  2. Lee W, Park SJ. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem Rev. 2014;114:7487–556.

    CAS  Google Scholar 

  3. Purkait MK, Mohanty K. Membrane technologies and applications. CRC press; 2011.

  4. Taylor-Pashow KM, Della Rocca J, Huxford RC, Lin W. Hybrid nanomaterials for biomedical applications. Chem Commun. 2010;46:5832–49.

    CAS  Google Scholar 

  5. Lee W. The anodization of aluminum for nanotechnology applications. JOM. 2010;62:57–63.

    CAS  Google Scholar 

  6. Ashammakhi N, Ahadian S, Xu C, Montazerian H, Ko H, Nasiri R, Barros N, Khademhosseini A. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Mater Today. 2019;1:100008

    CAS  Google Scholar 

  7. James R, Toti US, Laurencin CT, Kumbar SG. Electrospun nanofibrous scaffolds for engineering soft connective tissues. Methods Mol Biol. 2011;726:243–58.

    CAS  Google Scholar 

  8. Pina S, Rebelo R, Correlo VM, Oliveira JM, Reis RL. Bioceramics for osteochondral tissue engineering and regeneration. Adv Exp Med Biol. 2018;1058:53–75.

    CAS  Google Scholar 

  9. Mussano F, Genova T, Serra FG, Carossa M, Munaron L, Carossa S. Nano-pore size of alumina affects osteoblastic response. Int J Mol Sci. 2018;19:528.

    Google Scholar 

  10. Panas-Perez E, Gatt CJ, Dunn MG. Development of a silk and collagen fiber scaffold for anterior cruciate ligament reconstruction. J Mater Sci Mater Med. 2013;24:257–65.

    CAS  Google Scholar 

  11. Filardo G, Kon E, Roffi A, Di Martino A, Marcacci M. Scaffold-based repair for cartilage healing: a systematic review and technical note. Arthroscopy. 2013;29:174–86.

    Google Scholar 

  12. Xie X, Wang Y, Zhao C, Guo S, Liu S, Jia W, et al. Comparative evaluation of MSCs from bone marrow and adipose tissue seeded in PRP-derived scaffold for cartilage regeneration. Biomaterials. 2012;33:7008–18.

    CAS  Google Scholar 

  13. Zhang Q, Lu H, Kawazoe N, Chen G. Pore size effect of collagen scaffolds on cartilage regeneration. Acta Biomaterialia. 2014;10:2005–13.

    CAS  Google Scholar 

  14. Wolf MT, Dearth CL, Sonnenberg SB, Loboa EG, Badylak SF. Naturally derived and synthetic scaffolds for skeletal muscle reconstruction. Adv Drug Deliv Rev. 2015;84:208–21.

    CAS  Google Scholar 

  15. Riboldi SA, Sampaolesi M, Neuenschwander P, Cossu G, Mantero S. Electrospun degradable polyesterurethane membranes: potential scaffolds for skeletal muscle tissue engineering. Biomaterials. 2005;26:4606–15.

    CAS  Google Scholar 

  16. Valentin JE, Turner NJ, Gilbert TW, Badylak SF. Functional skeletal muscle formation with a biologic scaffold. Biomaterials. 2010;31:7475–84.

    CAS  Google Scholar 

  17. Williamson MR, Black R, Kielty C. PCL-PU composite vascular scaffold production for vascular tissue engineering: attachment, proliferation and bioactivity of human vascular endothelial cells. Biomaterials. 2006;27:3608–16.

    CAS  Google Scholar 

  18. Sarkar S, Lee GY, Wong JY, Desai TA. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Biomaterials. 2006;27:4775–82.

    CAS  Google Scholar 

  19. Cao H, Liu T, Chew SY. The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev. 2009;61:1055–64.

    CAS  Google Scholar 

  20. Seyedmahmoud R, Çelebi-Saltik B, Barros N, Nasiri R, Banton E, Shamloo A, et al. Three-dimensional bioprinting of functional skeletal muscle tissue using gelatin methacryloyl-alginate bioinks. Micromachines. 2019;10:679.

    Google Scholar 

  21. Jani AMM, Losic D, Voelcker NH. Nanoporous anodic aluminium oxide: advances in surface engineering and emerging applications. Prog Mater Sci. 2013;58:636–704.

    Google Scholar 

  22. Fetah K, Tebon P, Goudie MJ, Eichenbaum J, Ren L, Barros N, et al. The emergence of 3D bioprinting in organ-on-chip systems. Prog Biomed Eng. 2019;1:012001.

    Google Scholar 

  23. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27:3413–31.

    CAS  Google Scholar 

  24. Taboas JM, Maddox RD, Krebsbach PH, Hollister SJ. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds. Biomaterials. 2003;24:181–94.

    CAS  Google Scholar 

  25. Zhang H, Li X, Wen J, Zhao C. Preparation and characterisation of HA/TCP biphasic porous ceramic scaffolds with pore-oriented structure. Ceram Int. 2017;43(15):11780–11785.

    CAS  Google Scholar 

  26. Li J, Song Y, Zhang S, Zhao C, Zhang F, Zhang X, et al. In vitro responses of human bone marrow stromal cells to a fluoridated hydroxyapatite coated biodegradable Mg-Zn alloy. Biomaterials. 2010;31:5782–8.

    CAS  Google Scholar 

  27. Meng ZX, Wang YS, Ma C, Zheng W, Li L, Zheng YF. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater Sci Eng. 2010;30:1204–10.

    CAS  Google Scholar 

  28. Soliman S, Pagliari S, Rinaldi A, Forte G, Fiaccavento R, Pagliari F, et al. Multiscale three-dimensional scaffolds for soft tissue engineering via multimodal electrospinning. Acta Biomaterialia. 2010;6:1227–37.

    CAS  Google Scholar 

  29. Gautam S, Dinda AK, Mishra NC. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Mater Sci Eng C Mater Biol Appl. 2013;33:1228–35.

    CAS  Google Scholar 

  30. Lao L, Wang Y, Zhu Y, Zhang Y, Gao C. Poly(lactide-co-glycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J Mater Sci Mater Med. 2011;22:1873–84.

    CAS  Google Scholar 

  31. Hoque ME, Chuan YL, Pashby I. Extrusion based rapid prototyping technique: an advanced platform for tissue engineering scaffold fabrication. Biopolymers. 2012;97:83–93.

    CAS  Google Scholar 

  32. Arafat MT, Lam CX, Ekaputra AK, Wong SY, Li X, Gibson I. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Acta Biomaterialia. 2011;7:809–20.

    CAS  Google Scholar 

  33. Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, et al. Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomaterialia. 2010;6:2028–34.

    CAS  Google Scholar 

  34. Díaz-Lantada A, Mosquera A, Endrino J, Lafont P. Design and rapid prototyping of DLC coated fractal surfaces for tissue engineering applications. In: Journal of Physics: Conference Series (Vol. 252, No. 1, p. 012003). IOP Publishing; 2010.

  35. Liu W, Wang D, Huang J, Wei Y, Xiong J, Zhu W, et al. Low-temperature deposition manufacturing: a novel and promising rapid prototyping technology for the fabrication of tissue-engineered scaffold. Mater Sci Eng C Mater Biol Appl. 2017;70:976–82.

    CAS  Google Scholar 

  36. Salerno A, Di Maio E, Iannace S, Netti P. Tailoring the pore structure of PCL scaffolds for tissue engineering prepared via gas foaming of multi-phase blends. J Porous Mater. 2012;19:181–8.

    CAS  Google Scholar 

  37. Dehghani F, Annabi N. Engineering porous scaffolds using gas-based techniques. Curr Opin Biotechnol. 2011;22:661–6.

    CAS  Google Scholar 

  38. Ji C, Annabi N, Khademhosseini A, Dehghani F. Fabrication of porous chitosan scaffolds for soft tissue engineering using dense gas CO2. Acta Biomaterialia. 2011;7:1653–64.

    CAS  Google Scholar 

  39. Duarte ARC, Mano JF, Reis RL. Supercritical fluids in biomedical and tissue engineering applications: a review. Int Mater Rev. 2013;54:214–22.

    Google Scholar 

  40. Nasri-Nasrabadi B, Mehrasa M, Rafienia M, Bonakdar S, Behzad T, Gavanji S. Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydr Polym. 2014;108:232–8.

    CAS  Google Scholar 

  41. Chiu YC, Larson JC, Isom A Jr., Brey EM. Generation of porous poly(ethylene glycol) hydrogels by salt leaching. Tissue Eng Part C Methods. 2010;16:905–12.

    CAS  Google Scholar 

  42. Ampawong S, Aramwit P. In vivo safety and efficacy of sericin/poly (vinyl alcohol)/glycerin scaffolds fabricated by freeze-drying and salt-leaching techniques for wound dressing applications. J Bioact Compat Polym. 2017;32(6):582–595.

    CAS  Google Scholar 

  43. Leung BM, Sefton MV. A modular approach to cardiac tissue engineering. Tissue Eng Part A. 2010;16:3207–18.

    CAS  Google Scholar 

  44. Gauvin R, Khademhosseini A. Microscale technologies and modular approaches for tissue engineering: moving toward the fabrication of complex functional structures. ACS Nano. 2011;5:4258–64.

    CAS  Google Scholar 

  45. Yang X, Lu TJ, Kim T. An analytical model for permeability of isotropic porous media. Phys Lett A. 2014;378:2308–11.

    CAS  Google Scholar 

  46. Rahbari A, Montazerian H, Davoodi E, Homayoonfar S. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects. Computer Methods Biomech Biomed Eng. 2017;20:231–41.

    CAS  Google Scholar 

  47. Montazerian H, Zhianmanesh M, Davoodi E, Milani A, Hoorfar M. Longitudinal and radial permeability analysis of additively manufactured porous scaffolds: effect of pore shape and porosity. Mater Des. 2017;122:146–56.

    CAS  Google Scholar 

  48. Zhianmanesh M, Varmazyar M, Montazerian H. Fluid permeability of graded porosity scaffolds architectured with minimal surfaces. ACS Biomater Sci Eng. 2019;5:1228–37.

    CAS  Google Scholar 

  49. Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissue engineering. Electron J Biotechnol. 2000;3:23–24.

    Google Scholar 

  50. Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007;28:3587–93.

    CAS  Google Scholar 

  51. Guan J, Fujimoto KL, Sacks MS, Wagner WR. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials. 2005;26:3961–71.

    CAS  Google Scholar 

  52. Tan L, Yu X, Wan P, Yang K. Biodegradable materials for bone repairs: a review. J Mater Sci Technol. 2013;29:503–13.

    CAS  Google Scholar 

  53. Hutmacher DW, Goh JC, Teoh SH. An introduction to biodegradable materials for tissue engineering applications. Ann Acad Med Singap. 2001;30:183–91.

    CAS  Google Scholar 

  54. Eling B, Gogolewski S, Pennings AJ. Biodegradable materials of poly(l-lactic acid): 1. Melt-spun and solution-spun fibres. Polymer. 1982;23:1587–93.

    CAS  Google Scholar 

  55. Sinha Ray S, Yamada K, Okamoto M, Ogami A, Ueda K. New polylactide/layered silicate nanocomposites. 3. high-performance biodegradable materials. Chem Mater. 2003;15:1456–65.

    Google Scholar 

  56. Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng. 2004;32:477–86.

    Google Scholar 

  57. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci. 1996;7:23–38.

    Google Scholar 

  58. Zhang S, Li J, Song Y, Zhao C, Zhang X, Xie C, et al. In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy. Mater Sci Eng. 2009;29:1907–12.

    CAS  Google Scholar 

  59. KubÁSek J, VojtĚCh D. Structural and corrosion characterization of biodegradable Mg–RE (RE=Gd, Y, Nd) alloys. Trans Nonferrous Met Soc China. 2013;23:1215–25.

    Google Scholar 

  60. Stulikova I, Smola B. Mechanical properties and phase composition of potential biodegradable Mg–Zn–Mn–base alloys with addition of rare earth elements. Mater Charact. 2010;61:952–8.

    CAS  Google Scholar 

  61. Gu X-N, Zheng Y-F. A review on magnesium alloys as biodegradable materials. Front Mater Sci China. 2010;4:111–5.

    Google Scholar 

  62. Holy CE, Shoichet MS, Davies JE. Engineering three-dimensional bone tissuein vitro using biodegradable scaffolds: Investigating initial cell-seeding density and culture period. J Biomed Mater Res. 2000;51:376–82.

    CAS  Google Scholar 

  63. Nam YS, Park TG. Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res. 1999;47:8–17.

    CAS  Google Scholar 

  64. Klompmaker J, Jansen HW, Veth RP, de Groot JH, Nijenhuis AJ, Pennings AJ. Porous polymer implant for repair of meniscal lesions: a preliminary study in dogs. Biomaterials. 1991;12:810–6.

    CAS  Google Scholar 

  65. Tienen TG, Heijkants RG, de Groot JH, Pennings AJ, Schouten AJ, Veth RP, et al. Replacement of the knee meniscus by a porous polymer implant: a study in dogs. Am J Sports Med. 2006;34:64–71.

    Google Scholar 

  66. Sheikh Z, Najeeb S, Khurshid Z, Verma V, Rashid H, Glogauer M. Biodegradable materials for bone repair and tissue engineering applications. Mater. 2015;8:5744–94.

    CAS  Google Scholar 

  67. Ozawa T, Mickle DA, Weisel RD, Koyama N, Wong H, Ozawa S, et al. Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats. J Thorac Cardiovasc Surg. 2002;124:1157–64.

    Google Scholar 

  68. Fabbro A, Bosi S, Ballerini L, Prato M. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks. ACS Chem Neurosci. 2012;3:611–8.

    CAS  Google Scholar 

  69. Malarkey EB, Parpura V. Carbon nanotubes in neuroscience. In: Czernicki Z, Baethmann A, Ito U, Katayama Y, Kuroiwa T, Mendelow D, editors. Brain edema XIV. Vienna: Springer; 2010. p. 337–41.

    Google Scholar 

  70. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z, Casciano D, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano. 2010;4:3181–6.

    CAS  Google Scholar 

  71. Kumar CS, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev. 2011;63:789–808.

    CAS  Google Scholar 

  72. Zhang L, Xia J, Zhao Q, Liu L, Zhang Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small. 2010;6:537–44.

    CAS  Google Scholar 

  73. Radmansouri M, Bahmani E, Sarikhani E, Rahmani K, Sharifianjazi F, Irani M. Doxorubicin hydrochloride-Loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers for hyperthermic tumor cell treatment and controlled drug release. Int J Biol Macromolecules. 2018;116:378–84.

    CAS  Google Scholar 

  74. Lee K, Goudie MJ, Tebon P, Sun W, Luo Z, Lee J, et al. Non-transdermal microneedles for advanced drug delivery. Adv Drug Delivery Rev. 2019 (In Press).

  75. Pérez-López B, Merkoçi A. Nanomaterials based biosensors for food analysis applications. Trends Food Sci Technol. 2011;22:625–39.

    Google Scholar 

  76. Christenson C, Baryeh K, Ahadian S, Nasiri R, Dokmeci MR, Goudie M, et al. Enhancement of label-free biosensing of cardiac troponin I. In: Label-free Biomedical Imaging and Sensing (LBIS) (Vol. 11251, p. 112512J). International Society for Optics and Photonics; 2020.

  77. Hahn MA, Singh AK, Sharma P, Brown SC, Moudgil BM. Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem. 2011;399:3–27.

    CAS  Google Scholar 

  78. Yao C, Yao C, Tong Y. Lanthanide ion-based luminescent nanomaterials for bioimaging. Trends Anal Chem. 2012;39:60–71.

    CAS  Google Scholar 

  79. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun. 2011;47:6858–60.

    CAS  Google Scholar 

  80. McMahon RE, Wang L, Skoracki R, Mathur AB. Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B Appl Biomater. 2013;101:387–97.

    Google Scholar 

  81. Wan AC, Ying JY. Nanomaterials for in situ cell delivery and tissue regeneration. Adv Drug Deliv Rev. 2010;62:731–40.

    CAS  Google Scholar 

  82. Dozois MD, Bahlmann LC, Zilberman Y, Tang X. Carbon nanomaterial-enhanced scaffolds for the creation of cardiac tissue constructs: a new frontier in cardiac tissue engineering. Carbon. 2017;120:338–49.

    CAS  Google Scholar 

  83. Shamloo A, Abdorahimzadeh S, Nasiri R. Exploring contraction–expansion inertial microfluidic‐based particle separation devices integrated with curved channels. AIChE J. 2019;65:e16741.

    CAS  Google Scholar 

  84. O’Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14:88–95.

    Google Scholar 

  85. Yang H, Liu C, Yang D, Zhang H, Xi Z. Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol. 2009;29:69–78.

    Google Scholar 

  86. Yang H, Xia Y. Bionanotechnology: enabling biomedical research with nanomaterials. Adv Mater. 2007;19:3085–7.

    CAS  Google Scholar 

  87. Zhao C, Tan A, Pastorin G, Ho HK. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnol Adv. 2013;31:654–68.

    Google Scholar 

  88. Zhang L, Webster TJ. Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today. 2009;4:66–80.

    CAS  Google Scholar 

  89. Cellot G, Toma FM, Varley ZK, Laishram J, Villari A, Quintana M, et al. Carbon nanotube scaffolds tune synaptic strength in cultured neural circuits: novel frontiers in nanomaterial-tissue interactions. J Neurosci. 2011;31:12945–53.

    CAS  Google Scholar 

  90. Houser JE, Hebert KR. The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. Nat Mater. 2009;8:415–20.

    CAS  Google Scholar 

  91. Masuda H, Fukuda K. Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science. 1995;268:1466.

    CAS  Google Scholar 

  92. Sulka GD. Highly ordered anodic porous alumina formation by self-organized anodizing. In: Nanostructured materials in electrochemistry. Wiley-VCH Verlag GmbH & Co. KGaA; 2008. pp. 1–116.

  93. Cheng C, Ngan AHW. Theoretical pore growth models for nanoporous alumina. In: Losic D, Santos A, editors. Nanoporous alumina. Cham: Springer International Publishing; 2015. pp. 31–60.

  94. Poinern GEJ, Ali N, Fawcett D. Progress in nano-engineered anodic aluminum oxide membrane development. Mater. 2011;4:487–526.

    Google Scholar 

  95. Stępniowski WJ, Forbot D, Norek M, Michalska-Domańska M, Król A. The impact of viscosity of the electrolyte on the formation of nanoporous anodic aluminum oxide. Electrochim Acta. 2014;133:57–64.

    Google Scholar 

  96. Stępniowski WJ, Moneta M, Norek M, Michalska-Domańska M, Scarpellini A, Salerno M. The influence of electrolyte composition on the growth of nanoporous anodic alumina. Electrochim Acta. 2016;211:453–60.

    Google Scholar 

  97. Nielsch K, Choi J, Schwirn K, Wehrspohn RB, Gösele U. Self-ordering regimes of porous alumina: the 10 porosity rule. Nano Lett. 2002;2:677–80.

    CAS  Google Scholar 

  98. Wang Z, Chen M, Li H-L. Preparation and characterization of uniform polyaniline nano-fibrils using the anodic aluminum oxide template. Mater Sci Eng. 2002;328:33–38.

    Google Scholar 

  99. Li A, Müller F, Gösele U. Polycrystalline and monocrystalline pore arrays with large interpore distance in anodic alumina. Electrochem Solid-State Lett. 2000;3:131–4.

    CAS  Google Scholar 

  100. Sun Z, Kim HK. Growth of ordered, single-domain, alumina nanopore arrays with holographically patterned aluminum films. Appl Phys Lett. 2002;81:3458–60.

    CAS  Google Scholar 

  101. Mikulskas I, Juodkazis S, Tomasiūnas R, Dumas JG. Aluminum oxide photonic crystals grown by a new hybrid method. Adv Mater. 2001;13:1574–7.

    CAS  Google Scholar 

  102. Masuda H, Asoh H, Watanabe M, Nishio K, Nakao M, Tamamura T. Square and triangular nanohole array architectures in anodic alumina. Adv Mater. 2001;13:189–92.

    CAS  Google Scholar 

  103. Choi J, Park Y-B, Scherer A. Fabrication of a tungsten master stamp using self-ordered porous alumina. Nanotechnology. 2005;16:1655.

    CAS  Google Scholar 

  104. Kim J, Ganorkar S, Choi J, Kim Y-H, Kim S-I. Fabrication of well-ordered, anodic aluminum oxide membrane using hybrid anodization. J Nanosci Nanotechnol. 2017;17:761–5.

    CAS  Google Scholar 

  105. Davoodi E, Montazerian H, Haghniaz R, Rashidi A, Ahadian S, Sheikhi A. 3D-printed ultra-robust surface-doped porous silicone sensors for wearable biomonitoring. ACS Nano. 2020;14(2):1520–1532.

    CAS  Google Scholar 

  106. Montazerian H, Mohamed M, Montazeri MM, Kheiri S, Milani A, Kim K, et al. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. Acta Biomaterialia. 2019;96:149–60.

    CAS  Google Scholar 

  107. Steinhart M, Wendorff JH, Greiner A, Wehrspohn RB, Nielsch K, Schilling J, et al. Polymer nanotubes by wetting of ordered porous templates. Science. 2002;296:1997.

    CAS  Google Scholar 

  108. Al-Kaysi RO, Ghaddar TH, Guirado G. Fabrication of one-dimensional organic nanostructures using anodic aluminum oxide templates. J Nanomaterials. 2009;2009:1–14.

    Google Scholar 

  109. Bechara SL, Judson A, Popat KC. Template synthesized poly(epsilon-caprolactone) nanowire surfaces for neural tissue engineering. Biomaterials. 2010;31:3492–501.

    CAS  Google Scholar 

  110. Porter JR, Henson A, Popat KC. Biodegradable poly(epsilon-caprolactone) nanowires for bone tissue engineering applications. Biomaterials. 2009;30:780–8.

    CAS  Google Scholar 

  111. Zhang Y, Zhou L, Li D, Xue N, Xu X, Li J. Oriented nano-structured hydroxyapatite from the template. Chem Phys Lett. 2003;376:493–7.

    CAS  Google Scholar 

  112. Grimm S, Martín J, Rodriguez G, Fernández-Gutierrez M, Mathwig K, Wehrspohn RB, et al. Cellular interactions of biodegradable nanorod arrays prepared by nondestructive extraction from nanoporous alumina. J Mater Chem. 2010;20:3171–7.

    CAS  Google Scholar 

  113. Liu C-L, Chen H-L. Variable crystal orientation of poly (ethylene oxide) confined within the tubular space templated by anodic aluminum oxide nanochannels. Macromolecules. 2017;50:631–41.

    Google Scholar 

  114. Sarkar J, Khan GG, Basumallick A. Nanowires: properties, applications and synthesis via porous anodic aluminium oxide template. Bull Mater Sci. 2007;30:271–90.

    CAS  Google Scholar 

  115. Wang GJ, Lin YC, Hsu SH. The fabrication of PLGA microvessel scaffolds with nano-patterned inner walls. Biomed Microdev. 2010;12:841–8.

    CAS  Google Scholar 

  116. Redenti S, Tao S, Yang J, Gu P, Klassen H, Saigal S, et al. Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold. J Ocul Biol Dis Info. 2008;1:19–29.

    Google Scholar 

  117. Gefen O, Balaban NQ. The Moore’s Law of microbiology - towards bacterial culture miniaturization with the micro-Petri chip. Trends Biotechnol. 2008;26:345–7.

    CAS  Google Scholar 

  118. Ingham CJ, Sprenkels A, Bomer J, Molenaar D, van den Berg A, van Hylckama Vlieg JE, et al. The micro-Petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci USA. 2007;104:18217–22.

    CAS  Google Scholar 

  119. Hulbert SF, Matthews JR, Klawitter JJ, Sauer BW, Leonard RB. Effect of stress on tissue ingrowth into porous aluminum oxide. J Biomed Mater Res. 1974;8:85–97.

    CAS  Google Scholar 

  120. Yoon B-H, Choi W-Y, Kim H-E, Kim J-H, Koh Y-H. Aligned porous alumina ceramics with high compressive strengths for bone tissue engineering. Scr Mater. 2008;58:537–40.

    CAS  Google Scholar 

  121. Bose S, Darsell J, Hosick HL, Yang L, Sarkar DK, Bandyopadhyay A. Processing and characterization of porous alumina scaffolds. J Mater Sci Mater Med. 2002;13:23–8.

    CAS  Google Scholar 

  122. Ohgushi H, Kotobuki N, Funaoka H, Machida H, Hirose M, Tanaka Y, et al. Tissue engineered ceramic artificial joint-ex vivo osteogenic differentiation of patient mesenchymal cells on total ankle joints for treatment of osteoarthritis. Biomaterials. 2005;26:4654–61.

    CAS  Google Scholar 

  123. Thormann A, Teuscher N, Pfannmoller M, Rothe U, Heilmann A. Nanoporous aluminum oxide membranes for filtration and biofunctionalization. Small. 2007;3:1032–40.

    CAS  Google Scholar 

  124. Walpole AR, Briggs EP, Karlsson M, Pålsgård E, Wilshaw PR. Nano-porous alumina coatings for improved bone implant interfaces. Materialwissenschaft und Werkstofftechnik. 2003;34:1064–8.

    CAS  Google Scholar 

  125. Kang H-J, Kim DJ, Park S-J, Yoo J-B, Ryu YS. Controlled drug release using nanoporous anodic aluminum oxide on stent. Thin Solid Films. 2007;515:5184–7.

    CAS  Google Scholar 

  126. Losic D, Simovic S. Self-ordered nanopore and nanotube platforms for drug delivery applications. Expert Opin Drug Deliv. 2009;6:1363–81.

    CAS  Google Scholar 

  127. Kwak DH, Yoo JB, Kim DJ. Drug release behavior from nanoporous anodic aluminum oxide. J Nanosci Nanotechnol. 2010;10:345–8.

    CAS  Google Scholar 

  128. Sin EJ, Moon Y-S, Lee YK, Lim J-O, Huh J-S, Choi S-Y, et al. Surface modification of aluminum oxide for biosensing applications. Biomed Eng. 2012;24:111–6.

    CAS  Google Scholar 

  129. Heilmann A, Teuscher N, Kiesow A, Janasek D, Spohn U. Nanoporous aluminum oxide as a novel support material for enzyme biosensors. J Nanosci Nanotechnol. 2003;3:375–9.

    CAS  Google Scholar 

  130. Pan S, Rothberg LJ. Interferometric sensing of biomolecular binding using nanoporous aluminum oxide templates. Nano Lett. 2003;3:811–4.

    CAS  Google Scholar 

  131. Yogeswaran U, Chen S-M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors. 2008;8:290–313.

    CAS  Google Scholar 

  132. Ingham CJ, ter Maat J, de Vos WM. Where bio meets nano: the many uses for nanoporous aluminum oxide in biotechnology. Biotechnol Adv. 2012;30:1089–99.

    CAS  Google Scholar 

  133. Parkinson LG, Giles NL, Adcroft KF, Fear MW, Wood FM, Poinern GE. The potential of nanoporous anodic aluminium oxide membranes to influence skin wound repair. Tissue Eng Part A. 2009;15:3753–63.

    CAS  Google Scholar 

  134. Popat KC, Chatvanichkul KI, Barnes GL, Latempa TJ Jr., Grimes CA, Desai TA. Osteogenic differentiation of marrow stromal cells cultured on nanoporous alumina surfaces. J Biomed Mater Res A. 2007;80:955–64.

    Google Scholar 

  135. Santos A, Kumeria T, Losic D. Nanoporous anodic aluminum oxide for chemical sensing and biosensors. Trends Anal Chem. 2013;44:25–38.

    CAS  Google Scholar 

  136. Davoodi E, Fayazfar H, Liravi F, Jabari E, Toyserkani E. Drop-on-demand high-speed 3D printing of flexible milled carbon fiber/silicone composite sensors for wearable biomonitoring devices. Addit Manuf. 2020;32:101016.

    CAS  Google Scholar 

  137. Montazerian H, Rashidi A, Dalili A, Najjaran H, Milani AS, Hoorfar M. Graphene‐coated spandex sensors embedded into silicone sheath for composites health monitoring and wearable applications. Small. 2019;15:1804991.

    Google Scholar 

  138. Montazerian H, Dalili A, Milani A, Hoorfar M. Piezoresistive sensing in chopped carbon fiber embedded PDMS yarns. Compos Part B. 2019;164:648–58.

    CAS  Google Scholar 

  139. Kim DS, Lee HS, Lee J, Kim S, Lee K-H, Moon W, et al. Replication of high-aspect-ratio nanopillar array for biomimetic gecko foot-hair prototype by UV nano embossing with anodic aluminum oxide mold. Microsyst Technol. 2006;13:601–6.

    Google Scholar 

  140. Galindo M, Hagmann E, Marinello C, Zitzmann N. Long-term clinical results with Procera AllCeram full-ceramic crowns. Schweiz Monatsschrift fur Zahnmed. 2005;116:804–9.

    Google Scholar 

  141. Morel X, Rias A, Briat B, el Aouni A, D’Hermies F, Adenis JP, et al. Biocompatibility of a porous alumina orbital implant. Preliminary results of an animal experiment. J Fr Ophtalmol. 1998;21:163–9.

    CAS  Google Scholar 

  142. La Flamme KE, Mor G, Gong D, La Tempa T, Fusaro VA, Grimes CA, et al. Nanoporous alumina capsules for cellular macroencapsulation: transport and biocompatibility. Diabetes Technol Ther. 2005;7:684–94.

    Google Scholar 

  143. Han ED, Kim BH, Seo YH. Anti-cell adhesion characteristics of nanotextured surface for implantable biomedical device. Int J Precis Eng Manuf. 2017;18:239–44.

    Google Scholar 

  144. Bertin F, Piccardo A, Denes E, Delepine G, Tricard J. Porous alumina ceramic sternum: a reliable option for sternal replacement. Ann Thorac Med. 2018;13:226–9.

    CAS  Google Scholar 

  145. MS Aw, Bariana M, Losic D. Nanoporous anodic alumina for drug delivery and biomedical applications. In: Nanoporous alumina. Springer; 2015, pp. 319–54.

  146. Simovic S, Losic D, Vasilev K. Controlled drug release from porous materials by plasma polymer deposition. Chem Commun. 2010;46:1317–9.

    CAS  Google Scholar 

  147. Simovic S, Losic D, Vasilev K, Controlled release from porous platforms. 2011.

  148. Gong D, Yadavalli V, Paulose M, Pishko M, Grimes CA. Controlled molecular release using nanoporous alumina capsules. Biomed Microdev. 2003;5:75–80.

    CAS  Google Scholar 

  149. Rahman S, Atkins GJ, Findlay DM, Losic D. Nanoengineered drug releasing aluminium wire implants: a model study for localized bone therapy. J Mater Chem B. 2015;3:3288–96.

    CAS  Google Scholar 

  150. Ganguly D, Johnson C, Gottipati M, Rende D, Borca-Tasciuc D-A, Gilbert R. Specific nanoporous geometries on anodized alumina surfaces influence astrocyte adhesion and glial fibrillary acidic protein immunoreactivity levels. ACS Biomater Sci Eng. 2018;4:128–41.

    CAS  Google Scholar 

  151. Rahmati M, Mozafari M. Biocompatibility of alumina‐based biomaterials–a review. J Cell Physiol. 2019;234:3321–35.

    CAS  Google Scholar 

  152. El Merhie A, Salerno M, Toccafondi C, Dante S. Neuronal-like response of N2a living cells to nanoporous patterns of thin supported anodic alumina. Colloids Surf B Biointerfaces. 2019;178:32–37.

    CAS  Google Scholar 

  153. Fohlerova Z, Mozalev A. Tuning the response of osteoblast-like cells to the porous-alumina-assisted mixed-oxide nano-mound arrays. J Biomed Mater Res B Appl Biomater. 2018;106:1645–54.

    CAS  Google Scholar 

  154. Hoess A, Teuscher N, Thormann A, Aurich H, Heilmann A. Cultivation of hepatoma cell line HepG2 on nanoporous aluminum oxide membranes. Acta Biomaterialia. 2007;3:43–50.

    CAS  Google Scholar 

  155. Popat KC, Leary Swan EE, Mukhatyar V, Chatvanichkul KI, Mor GK, Grimes CA, et al. Influence of nanoporous alumina membranes on long-term osteoblast response. Biomaterials. 2005;26:4516–22.

    CAS  Google Scholar 

  156. Takami Y, Nakazawa T, Makinouchi K, Glueck J, Nosé Y. Biocompatibility of alumina ceramic and polyethylene as materials for pivot bearings of a centrifugal blood pump. J Biomed Mater Res. 1997;36:381–6.

    CAS  Google Scholar 

  157. Losic D, Losic D Jr. Preparation of porous anodic alumina with periodically perforated pores. Langmuir. 2009;25:5426–31.

    CAS  Google Scholar 

  158. De Aza AH, Chevalier J, Fantozzi G, Schehl M, Torrecillas R. Crack growth resistance of alumina, zirconia and zirconia toughened alumina ceramics for joint prostheses. Biomaterials. 2002;23:937–45.

    Google Scholar 

  159. Ogihara N, Usui Y, Aoki K, Shimizu M, Narita N, Hara K, et al. Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes. Nanomed. 2012;7:981–93.

    CAS  Google Scholar 

  160. Moeez S, Siddiqui EA, Khan S, Ahmad A. Size reduction of bulk alumina for mass production of fluorescent nanoalumina by fungus Humicola sp. J Clust Sci. 2017;28:1981–93.

    CAS  Google Scholar 

  161. de Groot K. Bioceramics of calcium phosphate. CRC Press, Boca Raton; 1983.

  162. Ravaglioli A, Krajewski A. Bioceramics and the human body. Elsevier Applied Science, London; 1992.

  163. Ravaglioli A, Krajewski JA. Bioceramics: materials, properties and applications. Springer Media B. V., Netherlands; 1992.

  164. Urist MR. Fundamental and clinical bone physiology. Lippincott, Philadelphia; 1980.

  165. Silva AD, Rigoli WR, Mello DC, Vasconcellos LM, Pallone EM, Lobo AO. Porous alumina scaffolds chemically modified by calcium phosphate minerals and their application in bone grafts. Int J Appl Ceram Technol. 2019;16(2):562–573.

    CAS  Google Scholar 

  166. Mahmoud ME, Masoud MS, Maximous NN. Synthesis, characterization and selective metal binding properties of physically adsorbed 2-thiouracil on the surface of porous silica and alumina. Microchimica Acta. 2004;147:111–5.

    CAS  Google Scholar 

  167. Byun J, Lee JI, Kwon S, Jeon G, Kim JK. Highly ordered nanoporous alumina on conducting substrates with adhesion enhanced by surface modification: universal templates for ultrahigh-density arrays of nanorods. Adv Mater. 2010;22:2028–32.

    CAS  Google Scholar 

  168. Aramesh M, Cervenka J. Surface modification of porous anodic alumina for medical and biological applications. Nanomedicine. 2014;438:438.

    Google Scholar 

  169. Elam J, Routkevitch D, Mardilovich P, George S. Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition. Chem Mater. 2003;15:3507–17.

    CAS  Google Scholar 

  170. Zhan H, Garrett DJ, Apollo NV, Ganesan K, Lau D, Prawer S, et al. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition. Sci Rep. 2016;6:19822.

    CAS  Google Scholar 

  171. Masuda H, Yotsuya M, Ishida M. Spatially selective metal deposition into a hole-array structure of anodic porous alumina using a microelectrode. Jpn J Appl Phys. 1998;37:L1090.

    CAS  Google Scholar 

  172. Capelossi V, Poelman M, Recloux I, Hernandez R, De Melo H, Olivier M. Corrosion protection of clad 2024 aluminum alloy anodized in tartaric-sulfuric acid bath and protected with hybrid sol–gel coating. Electrochim Acta. 2014;124:69–79.

    CAS  Google Scholar 

  173. Pan L, Zhang A, Zheng Z, Duan L, Zhang L, Shi Y, et al. Enhancing interfacial strength between AA5083 and cryogenic adhesive via anodic oxidation and silanization. Int J Adhes Adhesives. 2018;84:317–24.

    CAS  Google Scholar 

  174. Ishihara R, Uchiyama S, Ikezawa H, Yamada S, Hirota H, Umeno D, et al. Effect of dose on mole percentages of polymer brush and root grafted onto porous polyethylene sheet by radiation-induced graft polymerization. Ind Eng Chem Res. 2013;52:12582–6.

    CAS  Google Scholar 

  175. Chen Y-H, Shen Y-M, Wang S-C, Huang J-L. Fabrication of one-dimensional ZnO nanotube and nanowire arrays with an anodic alumina oxide template via electrochemical deposition. Thin Solid Films. 2014;570:303–9.

    CAS  Google Scholar 

  176. Losic D, Cole MA, Dollmann B, Vasilev K, Griesser HJ. Surface modification of nanoporous alumina membranes by plasma polymerization. Nanotechnology. 2008;19:245704.

    Google Scholar 

  177. Formentín P, Catalán Ú, Pol L, Fernández-Castillejo S, Solà R, Marsal L. Collagen and fibronectin surface modification of nanoporous anodic alumina and macroporous silicon for endothelial cell cultures. J Biol Eng. 2018;12:21.

    Google Scholar 

  178. Popat KC, Mor G, Grimes CA, Desai TA. Surface modification of nanoporous alumina surfaces with poly(ethylene glycol). Langmuir. 2004;20:8035–41.

    CAS  Google Scholar 

  179. Dusan L, Martin AC, Björn D, Krasimir V, Hans JG. Surface modification of nanoporous alumina membranes by plasma polymerization. Nanotechnology. 2008;19:245704.

    Google Scholar 

  180. La Flamme KE, Popat KC, Leoni L, Markiewicz E, La Tempa TJ, Roman BB, et al. Biocompatibility of nanoporous alumina membranes for immunoisolation. Biomaterials. 2007;28:2638–45.

    Google Scholar 

  181. Bertazzo S, Zambuzzi WF, da Silva HA, Ferreira CV, Bertran CA. Bioactivation of alumina by surface modification: a possibility for improving the applicability of alumina in bone and oral repair. Clin Oral Implants Res. 2009;20:288–93.

    CAS  Google Scholar 

  182. Costa HS, Mansur AAP, Barbosa-Stancioli EF, Pereira MM, Mansur HS. Morphological, mechanical, and biocompatibility characterization of macroporous alumina scaffolds coated with calcium phosphate/PVA. J Mater Sci. 2007;43:510–24.

    Google Scholar 

  183. Kim YH, Anirban JM, Song HY, Seo HS, Lee BT. In vitro and in vivo evaluations of 3D porous TCP-coated and non-coated alumina scaffolds. J Biomater Appl. 2011;25:539–58.

    CAS  Google Scholar 

  184. Swan EE, Popat KC, Desai TA. Peptide-immobilized nanoporous alumina membranes for enhanced osteoblast adhesion. Biomaterials. 2005;26:1969–76.

    Google Scholar 

  185. Saki M, Narbat MK, Samadikuchaksaraei A, Ghafouri HB, Gorjipour F. Biocompatibility study of a hydroxyapatite-alumina and silicon carbide composite scaffold for bone tissue engineering. Yakhteh. 2009;11:55–60.

    CAS  Google Scholar 

  186. Mallakpour S, Sadeghzadeh R. Facile and green methodology for surface‐grafted Al2O3 nanoparticles with biocompatible molecules: preparation of the poly (vinyl alcohol)@ poly (vinyl pyrrolidone) nanocomposites. Poly Adv Technol. 2017;28(12):1719–1729.

    CAS  Google Scholar 

  187. Mallakpour S, Sadeghzadeh R. Surface modification of alumina with biosafe molecules: Nanostructure, thermal, and mechanical properties of PVA nanocomposites. Poly AdvTechnol. 2017;134(10):44561–44570.

    Google Scholar 

  188. Chen J-T, Shin K, Leiston-Belanger JM, Zhang M, Russell TP. Amorphous carbon nanotubes with tunable properties via template wetting. Adv Funct Mater. 2006;16:1476.

    CAS  Google Scholar 

  189. Zhao L, Yang W, Zhang G, Zhai T, Yao J. Template-based melting-recrystallization route to organic nanotubes. Chem Phys Lett. 2003;379:479–83.

    CAS  Google Scholar 

  190. Xu H-B, Chen H-Z, Xu W-J, Wang M. Fabrication of organic copper phthalocyanine nanowire arrays via a simple AAO template-based electrophoretic deposition. Chem Phys Lett. 2005;412:294–8.

    CAS  Google Scholar 

  191. Lee J-K, Koh W-K, Chae W-S, Kim Y-R. Novel synthesis of organic nanowires and their optical properties. Chem Commun. 2002;2:138–9.

    Google Scholar 

  192. Bechara SL, Judson A, Popat KC. Template synthesized poly (ɛ-caprolactone) nanowire surfaces for neural tissue engineering. Biomaterials. 2010;31:3492–501.

    CAS  Google Scholar 

  193. Parkhutik V, Shershulsky V. Theoretical modelling of porous oxide growth on aluminium. J Phys D. 1992;25:1258.

    CAS  Google Scholar 

  194. Lee W, Ji R, Gosele U, Nielsch K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat Mater. 2006;5:741–7.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Elham Davoodi or Mina Hoorfar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoodi, E., Zhianmanesh, M., Montazerian, H. et al. Nano-porous anodic alumina: fundamentals and applications in tissue engineering. J Mater Sci: Mater Med 31, 60 (2020). https://doi.org/10.1007/s10856-020-06398-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06398-2

Navigation