Skip to main content
Log in

Hollow-layered nanoparticles for therapeutic delivery of peptide prepared using electrospraying

  • Delivery Systems
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The viability of single and coaxial electrospray techniques to encapsulate model peptide—angiotensin II into near mono-dispersed spherical, nanocarriers comprising N-octyl-O-sulphate chitosan and tristearin, respectively, was explored. The stability of peptide under controlled electric fields (during particle generation) was evaluated. Resulting nanocarriers were analysed using dynamic light scattering and electron microscopy. Cell toxicity assays were used to determine optimal peptide loading concentration (~1 mg/ml). A trout model was used to assess particle behaviour in vivo. A processing limit of 20 kV was determined. A range of electrosprayed nanoparticles were formed (between 100 and 300 nm) and these demonstrated encapsulation efficiencies of ~92 ± 1.8 %. For the single needle process, particles were in matrix form and for the coaxial format particles demonstrated a clear core–shell encapsulation of peptide. The outcomes of in vitro experiments demonstrated triphasic activity. This included an initial slow activity period, followed by a rapid and finally a conventional diffusive phase. This was in contrast to results from in vivo cardiovascular activity in the trout model. The results are indicative of the substantial potential for single/coaxial electrospray techniques. The results also clearly indicate the need to investigate both in vitro and in vivo models for emerging drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer. 2005;5(3):161–71.

    Article  Google Scholar 

  2. Bertling J, Blomer J, Kummel R. Hollow microspheres. Chem Eng Technol. 2004;27:829–37.

    Article  Google Scholar 

  3. Mathiowitz E, Jacob JS, Jong YS, Carino GP, Chickering DE, Chaturvedi P, Santos CA, Vijayaraghavan K, Montgomery S, Bassett M, Morrell C. Biologically erodable microsphere as potential oral-drug delivery system. Nature. 1997;386:410–4.

    Article  Google Scholar 

  4. Panyam J, Labhasetwar J. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329–47.

    Article  Google Scholar 

  5. Luan X, Skupin M, Siepmann J, Bodmeier R. Key parameters affecting the initial release (burst) and encapsulation efficiency of peptide-containing poly (lactide-co-glycolide) microparticles. Int J Pharm. 2006;324:168–75.

    Article  Google Scholar 

  6. Yang YY, Chung TS, Ng NP. Morphology drug distribution and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials. 2001;22(3):231–41.

    Article  Google Scholar 

  7. Lemoine D, Preat V. Polymeric nanoparticles as delivery system for influenza virus glycoproteins. J Control Release. 1998;54:15–27.

    Article  Google Scholar 

  8. Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR, Shebuski RJ, et al. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Release. 1997;43:197–212.

    Article  Google Scholar 

  9. Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial deposition following solvent displacement. Int J Pharm. 1989;55:R1–4.

    Article  Google Scholar 

  10. Barichello JM, Morishita M, Takayama K, Nagai T. Encapsulation of hydrophilic and lipophilic drugs in PLGA nanoparticles by the nanoprecipitation method. Drug Dev Ind Pharm. 1999;25:471–6.

    Article  Google Scholar 

  11. Perez C, Sanchez A, Putnam D, Ting D, Langer R, Alonso MJ. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J Control Release. 2001;75:211–24.

    Article  Google Scholar 

  12. Chronopoulou L, Fratoddi I, Palocci C, Venditti I, Russo MV. Osmosis based method drives the self-assembly of polymeric chains into micro and nanostructures. Langmuir. 2009;25:119406.

    Article  Google Scholar 

  13. York P. Strategies for particle design using supercritical fluid technologies. Pharm Sci Technol Today. 1999;2:430–40.

    Article  Google Scholar 

  14. Gu F, Zhang L, Teply BA, Mann N, Wang A, Radovic-Moreno AF, Langer R, Farokhzad OC. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA. 2008;105:2586–91.

    Article  Google Scholar 

  15. Ye A. Surface protein composition and concentration of whey protein isolate-stabilized oil-in-water emulsions: effect of heat treatment. Colloids Surf B. 2010;78(1):24–9.

    Article  Google Scholar 

  16. Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res. 2004;27(1):1–12.

    Article  Google Scholar 

  17. Gulfam M, Kim JE, Lee JM, Ku B, Chung BH, Chung BG. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir. 2012;28(21):8216–23.

    Article  Google Scholar 

  18. Valo H, Peltonen L, Vehviläinen S, Karjalainen M, Kostiainen R, Laaksonen T, Hirvonen J. Electrospray encapsulation of hydrophilic and hydrophobic drugs in poly(l-lactic acid) nanoparticles. Small. 2009;5(15):1791–8.

    Article  Google Scholar 

  19. Zamani M, Prabhakaran MP, Ramakrishna S. Advances in drug delivery via electrospun and electrosprayed nanomaterials. Int J Nanomed. 2013;8:2997–3017.

    Google Scholar 

  20. Hartman RPA, Brunner DJ, Camelot DMA, Marijnissen JCM, Scarlett B. Jet break-up in electrohydrodynamic atomization in the cone-jet mode. J Aerolsol Sci. 2000;31:65–95.

    Article  Google Scholar 

  21. Wu Y, MacKay JA, McDaniel JR, Chilkoti A, Clark RL. Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying. Biomacromolecules. 2009;10:19–24.

    Article  Google Scholar 

  22. Guarino V, Cirillo V, Altobelli R, Ambrosio L. Polymer-based platforms by electric field-assisted techniques for tissue engineering and cancer therapy. Expert Rev Med Devices. 2015;12(1):113–29.

    Article  Google Scholar 

  23. Ruiz-Ortega M, Lorenzo O, Rupérez M, Esteban V, Suzuki Y, Mezzano S, Plaza JJ, Egido J. Role of the renin-angiotensin system in vascular diseases: expanding the field. Hypertension. 2001;38(6):1382–7.

    Article  Google Scholar 

  24. Bunjes H, Drechsler M, Koch MHJ, Westesen K. Incorporation of the model drug ubidecarenone into solid lipid nanoparticles. Pharm Res. 2001;18:287–93.

    Article  Google Scholar 

  25. Westesen K, Siekmann B. Biodegradable colloidal drug carrier systems based on solid lipids. In: Benita S, editor. Microencapsulation. Marcel Dekker: New York; 1996. p. 213–58.

    Google Scholar 

  26. Muller RH, Mader K, Gohla S. Solid lipid nanoparticles (SLN) for controlled delivery-a review of the state of the art. Eur J Pharm Biopharm. 2000;50:161–77.

    Article  Google Scholar 

  27. Jenning V, Lippacher A, Gohla S. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenisation. J Microencapsul. 2002;19:1–10.

    Article  Google Scholar 

  28. Lippacher A, Muller RH, Mader K. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int J Pharm. 2001;214:9–12.

    Article  Google Scholar 

  29. Zhang C, Qu G, Sun Y, Yang T, Yao Z, Shen W, Shen Z, Ding Q, Zhou H, Ping Q. Biological evaluation of N-octyl-O-sulfate chitosan as a new nano-carrier of intravenous drugs. Eur J Pharm Sci. 2008;33:415–23.

    Article  Google Scholar 

  30. Benigni A, Cassis P, Remuzzi G. Angiotensin II revisited: new roles in inflammation, immunology and aging. EMBO Mol Med. 2010;2:247–57.

    Article  Google Scholar 

  31. Green S, Roldo M, Douroumis D, Bouropoulos N, Lamprou D, Fatouros DG. Chitosan derivatives alter release profiles of model compounds from calcium phosphate implants. Carbohydr Res. 2009;344(7):901–7.

    Article  Google Scholar 

  32. López-Herrera JM, Barrero A, Lopez A, Loscertales IG, Marquez M. Scaling laws. Aerosol Sci. 2003;34(5):535–52.

    Article  Google Scholar 

  33. Taylor G. Disintegration of water drops in an electric field. Proc R Soc Lond Ser A. 1964;280(1382):383–97.

    Article  Google Scholar 

  34. Montesano R, et al. Increased proteolytic activity is responsible for the aberrant morphogenetic behavior of endothelial cells expressing the middle T oncogene. Cell. 1990;62:435–45.

    Article  Google Scholar 

  35. Le Mével JC, Olson KR, Conklin D, Waugh D, Smith DD, Vaudry H, Conlon JM. Cardiovascular actions of trout urotensin II in the conscious trout, oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol. 1996;271:1335–43.

    Google Scholar 

  36. Lancien F, Wong M, Al Arab A, Mimassi N, Takei Y, Le Mével JC. Central ventilatory and cardiovascular actions of angiotensin peptides in trout. Am J Physiol Regul Integr Comp Physiol. 2012;303:311–20.

    Article  Google Scholar 

  37. Barrero A, Ganan-Calvo AM, Davila J, Palacio A, Gomez-Gonzalez E. Low and high Reynolds number flows inside Taylor cones. Phys Rev E. 1998;58(6):7309.

    Article  Google Scholar 

  38. Ku BK, Kim SS. Electrospray characteristics of highly viscous liquids. Aerosol Sci. 2002;33:1361–78.

    Article  Google Scholar 

  39. Lastow O, Balachandran W. Novel low voltage EHD spray nozzle for atomization of water in the cone jet mode. J Electrostat. 2007;65:490–9.

    Article  Google Scholar 

  40. Loscertales IG, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo AM. Micro/nano encapsulation via electriped coaxial liquid jets. Science. 2002;295:1695–8.

    Article  Google Scholar 

  41. Xie J, Ng WJ, Lee LY, Xie Jingwei, Wang CH. Encapsulation of protein drugs in biodegradable microparticles by coaxial electrospray. J Colloid Interface Sci. 2008;317:469–76.

    Article  Google Scholar 

  42. Jiang H, Hu Y, Li Y, Zhao P, Zhu K, Chen W. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release. 2005;108:237–43.

    Article  Google Scholar 

  43. Kim SY, Lee H, Cho S, Park JW, Park J, Hwang J. Size control of chitosan capsules containing insulin for oral drug delivery via a combined process of ionic gelation with electrohydrodynamic atomization. Ind Eng Chem Res. 2011;50:13762–70.

    Article  Google Scholar 

  44. Park I, Kim W, Kim SS. Multi-jet mode electrospray for non-conducting fluids using two fluids and a coaxial grooved nozzle. Aerosol Sci Technol. 2011;45:629–34.

    Article  Google Scholar 

  45. Raiche AT, Puleo DA. Triphasic release model for multilayered gelatin coatings that can recreate growth factor profiles during wound healing. J Drug Target. 2001;9(6):449–60.

    Article  Google Scholar 

  46. Christophersen PC, Zhang L, Yang M, Nielsen HM, Müllertz A, Mu H. Solid lipid particles for oral delivery of peptide and protein drugs I–elucidating the release mechanism of lysozyme during lipolysis. Eur J Pharm Biopharm. 2013;85(3A):473–80.

    Article  Google Scholar 

  47. Scalia S, Mezzena M. Incorporation of quercetin in lipid microparticles: effect on photo- and chemical-stability. J Pharm Biomed Anal. 2009;49(1):90–4.

    Article  Google Scholar 

  48. Christophersen PC, Zhang L, Müllertz A, Nielsen HM, Yang M, Mu H. Solid lipid particles for oral delivery of peptide and protein drugs II-the digestion of trilaurin protects desmopressin from proteolytic degradation. Pharm Res. 2014;31(9):2420–8.

    Article  Google Scholar 

  49. Balls AK, Matlack MB, Tucker IW. The hydrolysis of glycerides by crude pancrease lipase. J Biol Chem. 1937;122:125–38.

    Google Scholar 

  50. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983;65:55–63.

    Article  Google Scholar 

  51. Altman FP. Tetrazolium salts and formazans. Prog Histochem Cytochem. 1976;9:1–56.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge PeReNE (EU-INTERREG) for supporting this study. The authors also thank Professor Simon Cragg for assistance with the SEM and TEM and Dr Simone Elgass for developing the HPLC method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoochehr Rasekh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasekh, M., Young, C., Roldo, M. et al. Hollow-layered nanoparticles for therapeutic delivery of peptide prepared using electrospraying. J Mater Sci: Mater Med 26, 256 (2015). https://doi.org/10.1007/s10856-015-5588-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5588-y

Keywords

Navigation