Skip to main content

Advertisement

Log in

In vitro comparison of three rifampicin loading methods in a reinforced porous β-tricalcium phosphate scaffold

  • Delivery Systems
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The antibiotic compound, rifampicin (RFP), was loaded into porous reinforced β-tricalcium phosphate (β-TCP) scaffolds using three different solution adsorption methods. This resulted in drug delivery systems (DDS) generated by vacuum adsorption (VA), dynamic adsorption (DA), and static adsorption (SA). In vitro examination of the drug loading and release profiles of the DDS indicated that the unit mass of RFP loaded into the scaffold by the VA method (0.44 mg/g) was higher than that achieved by SA (0.42 mg/g) or DA (0.38 mg/g) (P < 0.05). The mechanical strength had no significant change after RFP-loading (P > 0.05). Moreover, there were no significant differences among the mechanical strength of three β-TCP DDS generated by loading RFP using SA, DA, and VA (P > 0.05). In vitro release testing showed an initial burst release of RFP from the three different DDS within the first 3 h and in the first 51 h, the cumulative release of RFP from VA-DDS, DA-DDS, and SA-DDS had reached 56.2, 83.6, and 88.6 %, respectively. Complete RFP release had occurred from VA-DDS, DA-DDS, and SA-DDS after 23, 17, and 15 days, respectively. As the VA-DDS method showed improved RFP loading and a more sustained drug release, this method is recommended for solution adsorption drug loading into porous β-TCP scaffolds to form a DDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Organization WH. Global tuberculosis report 2012. Geneva, Switzerland: World Moreno S, Jarrin I, Iribarren JA, et al Incidence and risk factors for tuberculosis in HIV-Guyatt GH, Oxman AD, Vist GE, et al, GRADE: an emerging consensus on rating quality of 0 Guyatt GH, Oxman AD, Kunz R, et al, Incorporating considerations of resources use into. 2012.

  2. Holloway KL, Henneberg RJ, de Barros Lopes M, Henneberg M. Evolution of human tuberculosis: a systematic review and meta-analysis of paleopathological evidence. Homo. 2011;62(6):402–58.

    Article  Google Scholar 

  3. Tiemersma EW, van der Werf MJ, Borgdorff MW, Williams BG, Nagelkerke NJ. Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review. PLoS One. 2011;6(4):e17601.

    Article  Google Scholar 

  4. Mehta PK, Raj A, Singh N, Khuller GK. Diagnosis of extrapulmonary tuberculosis by PCR. FEMS Immunol Med Microbiol. 2012;66(1):20–36.

    Article  Google Scholar 

  5. Merino P, Candel FJ, Gestoso I, Baos E, Picazo J. Microbiological diagnosis of spinal tuberculosis. Int Orthop. 2012;36(2):233–8.

    Article  Google Scholar 

  6. Trecarichi E, Di Meco E, Mazzotta V, Fantoni M. Tuberculous spondylodiscitis: epidemiology, clinical features, treatment, and outcome. Eur Rev Med Pharmacol Sci. 2012;16(Suppl 2):58–72.

    Google Scholar 

  7. Fuentes Ferrer M, Gutierrez Torres L, Ayala Ramirez O, Rumayor Zarzuelo M, del Prado Gonzalez N. Tuberculosis of the spine. A systematic review of case series. Int Orthop. 2012;36(2):221–31.

    Article  Google Scholar 

  8. Suarez-Garcia I, Noguerado A. Drug treatment of multidrug-resistant osteoarticular tuberculosis: a systematic literature review. Int J Infect Dis. 2012;16(11):e774–8.

    Article  Google Scholar 

  9. Society AT. Treatment of tuberculosis and tuberculosis infection in adults and children. Am J Respir Crit Care Med. 1994;149:1359–74.

    Article  Google Scholar 

  10. van Loenhout-Rooyackers J, Verbeek A, Jutte P. Chemotherapeutic treatment for spinal tuberculosis. Int J Tuberc Lung Dis. 2002;6(3):259–65.

    Google Scholar 

  11. Garg RK, Somvanshi DS. Spinal tuberculosis: a review. J Spinal Cord Med. 2011;34(5):440–54.

    Article  Google Scholar 

  12. Donald P. The chemotherapy of osteo-articular tuberculosis with recommendations for treatment of children. J Infect. 2011;62(6):411–39.

    Article  Google Scholar 

  13. Zhu M, Wang H, Liu J, He H, Hua X, He Q, Zhang L, Ye X, Shi J. A mesoporous silica nanoparticulate/β-TCP/BG composite drug delivery system for osteoarticular tuberculosis therapy. Biomaterials. 2011;32(7):1986–95.

    Article  Google Scholar 

  14. Zhang X, Ji J, Liu B. Management of spinal tuberculosis: a systematic review and meta-analysis. J Int Med Res. 2013;41(5):1395–407.

    Article  Google Scholar 

  15. Wu W, Zheng Q, Guo X, Sun J, Liu Y. A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy. Biomed Mater. 2009;4(6):065005.

    Article  Google Scholar 

  16. Han CD, Oh T, Cho SN, Yang JH, Park KK. Isoniazid could be used for antibiotic-loaded bone cement for musculoskeletal tuberculosis: an in vitro study. Clin Orthop Relat Res. 2013;471(7):2400–6.

    Article  Google Scholar 

  17. Mansour HM, Sohn M, Al-Ghananeem A, DeLuca PP. Materials for pharmaceutical dosage forms: molecular pharmaceutics and controlled release drug delivery aspects. Int J Mol Sci. 2010;11(9):3298–322.

    Article  Google Scholar 

  18. Bohner M. Physical and chemical aspects of calcium phosphates used in spinal surgery. Eur Spine J. 2001;10(2):S114–21.

    Article  Google Scholar 

  19. Meadows GR. Adjunctive use of ultraporous β-tricalcium phosphate bone void filler in spinal arthrodesis. Orthopedics. 2002;25(5):s579–84.

    Google Scholar 

  20. Aunoble S, Clément D, Frayssinet P, Harmand MF, Le Huec JC. Biological performance of a new β-TCP/PLLA composite material for applications in spine surgery: in vitro and in vivo studies. J Biomed Mater Res, Part A. 2006;78(2):416–22.

    Article  Google Scholar 

  21. Dohzono S, Imai Y, Nakamura H, Wakitani S, Takaoka K. Successful spinal fusion by E. coli-derived BMP-2-adsorbed porous beta-TCP granules: a pilot study. Clin Orthop Relat Res. 2009;467(12):3206–12.

    Article  Google Scholar 

  22. Becker S, Maissen O, Ponomarev I, Stoll T, Rahn B, Wilke I. Osteopromotion by a beta-tricalcium phosphate/bone marrow hybrid implant for use in spine surgery. Spine. 2006;31(1):11–7.

    Article  Google Scholar 

  23. Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials. 2008;29(29):3973–82.

    Article  Google Scholar 

  24. Guo Y-P, Guo L-H, Yao Y-b, Ning C-Q, Guo Y-J. Magnetic mesoporous carbonated hydroxyapatite microspheres with hierarchical nanostructure for drug delivery systems. Chem Commun. 2011;47(44):12215–7.

    Article  Google Scholar 

  25. Ye F, Guo H, Zhang H, He X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater. 2010;6(6):2212–8.

    Article  Google Scholar 

  26. Clemens DL, Lee B-Y, Xue M, Thomas CR, Meng H, Ferris D, Nel AE, Zink JI, Horwitz MA. Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrob Agents Chemother. 2012;56(5):2535–45.

    Article  Google Scholar 

  27. Matsushita N, Terai H, Okada T, Nozaki K, Inoue H, Miyamoto S, Takaoka K. A new bone-inducing biodegradable porous β-tricalcium phosphate. J Biomed Mater Res, Part A. 2004;70(3):450–8.

    Article  Google Scholar 

  28. Xie Y, Hardouin P, Zhu Z, Tang T, Dai K, Lu J. Three-dimensional flow perfusion culture system for stem cell proliferation inside the critical-size beta-tricalcium phosphate scaffold. Tissue Eng. 2006;12(12):3535–43.

    Article  Google Scholar 

  29. Barsoum BN, Kamel MS, Diab MM. Spectrophotometric determination of isoniazid and rifampicin from pharmaceutical preparations and biological fluids. Res J Agric Biol Sci. 2008;4(5):471–84.

    Google Scholar 

  30. Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y, Wang TC. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009;27(5):1006–20.

    Article  Google Scholar 

  31. Silverman LD, Lukashova L, Herman OT, Lane JM, Boskey AL. Release of gentamicin from a tricalcium phosphate bone implant. J Orthop Res. 2007;25(1):23–9.

    Article  Google Scholar 

  32. Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed. 2007;46(40):7548–58.

    Article  Google Scholar 

  33. Zilberman M, Elsner JJ. Antibiotic-eluting medical devices for various applications. J Controlled Release. 2008;130(3):202–15.

    Article  Google Scholar 

  34. Xie Y, Chopin D, Morin C, Hardouin P, Zhu Z, Tang J, Lu J. Evaluation of the osteogenesis and biodegradation of porous biphasic ceramic in the human spine. Biomaterials. 2006;27(13):2761–7.

    Article  Google Scholar 

  35. Chiang P-C, Ran Y, Chou K-J, Cui Y, Sambrone A, Chan C, Hart R. Evaluation of drug load and polymer by using a 96-well plate vacuum dry system for amorphous solid dispersion drug delivery. AAPS PharmSciTech. 2012;13(2):713–22.

    Article  Google Scholar 

  36. Hoang Thi TH, Morel S, Ayouni F, Flament M-P. Development and evaluation of taste-masked drug for paediatric medicines–Application to acetaminophen. Int J Pharm. 2012;434(1):235–42.

    Article  Google Scholar 

  37. Xiao F-j, Peng L, Zhang Y, Yun L-j. Silicon-substituted hydroxyapatite composite coating by using vacuum-plasma spraying and its interaction with human serum albumin. J Mater Sci Mater Med. 2009;20(8):1653–8.

    Article  Google Scholar 

  38. Sung JC, Padilla DJ, Garcia-Contreras L, VerBerkmoes JL, Durbin D, Peloquin CA, Elbert KJ, Hickey AJ, Edwards DA. Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharm Res. 2009;26(8):1847–55.

    Article  Google Scholar 

  39. Liu H, Zhang L, Shi P, Zou Q, Zuo Y, Li Y. Hydroxyapatite/polyurethane scaffold incorporated with drug-loaded ethyl cellulose microspheres for bone regeneration. J Biomed Mater Res B Appl Biomater. 2010;95(1):36–46.

    Article  Google Scholar 

  40. Doan T, Couet W, Olivier J. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Int J Pharm. 2011;414(1):112–7.

    Article  Google Scholar 

  41. Bao H, Jin X, Li L, Lv F, Liu T. OX26 modified hyperbranched polyglycerol-conjugated poly (lactic-co-glycolic acid) nanoparticles: synthesis, characterization and evaluation of its brain delivery ability. J Mater Sci Mater Med. 2012;23(8):1891–901.

    Article  Google Scholar 

  42. Lavin DM, Harrison MW, Tee LY, Wei KA, Mathiowitz E. A novel wet extrusion technique to fabricate self-assembled microfiber scaffolds for controlled drug delivery. J Biomed Mater Res, Part A. 2012;100(10):2793–802.

    Article  Google Scholar 

  43. Tahara Y, Kaneko T, Toita R, Yoshiyama C, Kitaoka T, Niidome T, Katayama Y, Kamiya N, Goto M. A novel double-coating carrier produced by solid-in-oil and solid-in-water nanodispersion technology for delivery of genes and proteins into cells. J Controlled Release. 2012;161(3):713–21.

    Article  Google Scholar 

  44. Swarnakar NK, Jain AK, Singh RP, Godugu C, Das M, Jain S. Oral bioavailability, therapeutic efficacy and reactive oxygen species scavenging properties of coenzyme Q10-loaded polymeric nanoparticles. Biomaterials. 2011;32(28):6860–74.

    Article  Google Scholar 

  45. Lau ET, Johnson SK, Mikkelsen D, Halley PJ, Steadman KJ. Preparation and in vitro release of zein microparticles loaded with prednisolone for oral delivery. J Microencapsul. 2012;29(7):706–12.

    Article  Google Scholar 

  46. Mandeville J-S, Bourassa P, Thomas TJ, Tajmir-Riahi H-A. Biogenic and Synthetic Polyamines Bind Cationic Dendrimers. PLoS One. 2012;7(4):e36087.

    Article  Google Scholar 

  47. Zhang X, Wyss UP, Pichora D, Goosen MF. A mechanistic study of antibiotic release from biodegradable poly (d, 1-lactide) cylinders. J Controlled Release. 1994;31(2):129–44.

    Article  Google Scholar 

  48. Bemer-Melchior P, Bryskier A, Drugeon HB. Comparison of the in vitro activities of rifapentine and rifampicin against Mycobacterium tuberculosis complex. J Antimicrob Chemother. 2000;46(4):571–6.

    Article  Google Scholar 

  49. Heifets LB, Lindholm-Levy PJ, Flory MA. Bactericidal activity in vitro of various rifamycins against Mycobacterium avium and Mycobacterium tuberculosis. Am J Respir Crit Care Med. 1990;141(3):626–30.

    Google Scholar 

  50. Prabaharan M, Mano J. Chitosan-based particles as controlled drug delivery systems. Drug Delivery. 2004;12(1):41–57.

    Article  Google Scholar 

  51. Guillaume O, Garric X, Lavigne JP, Van Den Berghe H, Coudane J. Multilayer, degradable coating as a carrier for the sustained release of antibiotics: preparation and antimicrobial efficacy in vitro. J Control Release. 2012;162(3):492–501.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (81071453), the Program for Innovative Research Team of Shanghai Municipal Education Commission, the Fund for Interdisciplinary Research on Medicine and Engineering of Shanghai Jiaotong University (YG2011MS24), the Fund for Key Discipline of Shanghai Municipal Education Commission (J50206), and a Project fund administered by the Shanghai Science and Technology Committee (13DZ1940802, 11441900700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Zhang or Youzhuan Xie.

Additional information

Junjie Yuan and Baoxin Wang have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Wang, B., Han, C. et al. In vitro comparison of three rifampicin loading methods in a reinforced porous β-tricalcium phosphate scaffold. J Mater Sci: Mater Med 26, 174 (2015). https://doi.org/10.1007/s10856-015-5437-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-015-5437-z

Keywords

Navigation