Skip to main content

Advertisement

Log in

Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Tricalcium phosphate (TCP) is recognized as a promising bone replacement material due to its high bioactivity and resorbable properties. To mimic biological apatites, incorporation of magnesium (Mg) in TCP was proposed. Mg-substituted TCP (β-TCMP) and β-TCP dense tablets were obtained by pressing and sintering at 1,000°C Mg-substituted calcium deficient apatite (Mg-CDA) and commercial TCP, respectively. The materials were characterized using X-ray diffraction, infrared spectroscopy and electron microscopy. Human osteoblast cells (SaOs2) were seeded onto the sintered tablets for 4 h, 24 h and 7 days. Results showed that Mg-CDA was completely transformed into β-TCMP. Moreover, β-TCMP stimulated adhesion and proliferation of human osteoblast cells. Consequently, the magnesium incorporation on calcium deficient apatites followed by sintering at 1,000°C seems to be a useful path to obtain biocompatible and non cytotoxic dense tablets with TCP structure with potential application on bone engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I.R. Gibson, I. Rehman, S.M. Best, W. Bonfield, J. Mater. Sci.: Mater. Med. 12, 799 (2000). doi:10.1023/A:1008905613182

    Article  Google Scholar 

  2. R.Z. LeGeros, in Calcium Phosphates in Oral Biology and Medicine, Monographs in Oral Sciences, vol. 15, ed. by H. Myers (Basel, Switzerland, 1991)

    Google Scholar 

  3. C. Rey, V. Renugopalkrishan, B.I. Collins, M.J. Glimcher, Calc. Tissue Int 49, 251 (1991)

    Article  CAS  Google Scholar 

  4. R.Z. LeGeros, S. Lin, R. Rohanizadeh, D. Mihjares, J.P. LeGeros, J. Mater. Sci.: Mater. Med 14, 201 (2003). doi:10.1023/A:1022872421333

    Article  CAS  Google Scholar 

  5. P.N. Kumta, C. Sfeir, D.-H. Lee, D. Olton, N. Choi, Acta. Biomater. 1, 65 (2005). doi:10.1016/j.actbio.2004.09.008

    Article  PubMed  Google Scholar 

  6. E. Landi, A. Tampieri, M. Mattioli-Belmonte, G. Celotti, M. Sandri, A. Gigante, P. Fava, G. Biagini, J. Eur. Ceram. Soc. 26, 2593 (2005). doi:10.1016/j.jeurceramsoc.2005.06.040

    Article  CAS  Google Scholar 

  7. L.W. Schroeder, B. Dickens, W.E. Brown, J. Solid State Chem. 22, 253 (1977). doi:10.1016/0022-4596(77)90002-0

    Article  ADS  CAS  Google Scholar 

  8. G. Daculsi, R.Z. LeGeros, D. Mitre, Calcif. Tissue Int. 45, 95 (1989). doi:10.1007/BF02561408

    Article  PubMed  CAS  Google Scholar 

  9. B. Wopenka, J.D. Pasteris, Mater. Sci. Eng. C 25, 131 (2005). doi:10.1016/j.msec.2005.01.008

    Article  CAS  Google Scholar 

  10. R.Z. LeGeros, A.M. Gatti, R. Kijkowska, D.Q. Mijares, J.P. LeGeros, Key Eng. Mater. 254–256, 127 (2004)

    Article  Google Scholar 

  11. S. Kannan, J.M. Ventura, J.M.F. Ferreira, Ceram. Int. 33, 637 (2007). doi:10.1016/j.ceramint.2005.11.014

    Article  CAS  Google Scholar 

  12. H. Zreiqat, C.R. Howlett, A. Zannettino, P. Evans et al., J. Biomed. Mater. Res. 62, 175 (2002). doi:10.1002/jbm.10270

    Article  PubMed  CAS  Google Scholar 

  13. Y. Yamasaki, Y. Yoshida, M. Okazaki, A. Shimazu et al. Biomaterials 24v4913 (2003)

  14. J.D. Pasteris, B. Wopenka, J.J. Freeman, K. Rogers, E. Valsami-Jones, J.A.M. van der Houwen, M.J. Silva, Biomaterials 25, 229 (2004). doi:10.1016/S0142-9612(03)00487-3

    Article  PubMed  CAS  Google Scholar 

  15. E.A. dos Santos, M. Farina, G.A. Soares, K. Anselme, J. Mater. Sci.: Mater. Med. 19, 2307 (2008). doi:10.1007/s10856-007-3347-4

    Article  CAS  Google Scholar 

  16. K. Lin, J. Chang, J. Lu, W. Wu, Y. Zeng, Ceram. Int. 33, 979 (2007). doi:10.1016/j.ceramint.2006.02.011

    Article  CAS  Google Scholar 

  17. G. Gronowicz, M.B. MacCarthy, J. Orthop. Res. 14, 878 (1996). doi:10.1002/jor.1100140606

    Article  PubMed  CAS  Google Scholar 

  18. R.K. Rude, H.E. Gruber, J. Nutr. Biochem. 15, 710 (2004). doi:10.1016/j.jnutbio.2004.08.001

    Article  PubMed  CAS  Google Scholar 

  19. L.M. Ryan, H.S. Cheung, R.Z. LeGeros, I.V. Kurup, J. Toth, P.R. Westfall, G.M. McCarthy, Calcif. Tissue Int. 65, 374 (1999). doi:10.1007/s002239900716

    Article  PubMed  CAS  Google Scholar 

  20. E. Landi, G. Logroscino, L. Proietti, A. Tampieri, M. Sandri, S. Sprio, J. Mater. Sci.: Mater. Med. 19, 239 (2008). doi:10.1007/s10856-006-0032-y

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support given by CNPq, CAPES and FAPERJ. We thank J. C. Araújo, V. C. A. Moraes and E. L. Moreira for Rietveld analyses contribution and the Chemistry Institute of the Federal University of Rio de Janeiro for the FTIR analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gloria A. Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sader, M.S., LeGeros, R.Z. & Soares, G.A. Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets. J Mater Sci: Mater Med 20, 521–527 (2009). https://doi.org/10.1007/s10856-008-3610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3610-3

Keywords

Navigation