Skip to main content

Advertisement

Log in

Preparation, characterization and mechanical performance of dense β-TCP ceramics with/without magnesium substitution

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Beta-tricalcium phosphate (β-TCP) powder was prepared by a two-step process: wet precipitation of apatitic tricalcium phosphate [Ca9(HPO4)(PO4)5(OH)] (β-TCP ‘precursor’) and calcination of the precursor at 800°C for 3 h to produce β-TCP. Magnesium-substituted tricalcium phosphate (β-TCMP) was produced by adding Mg(NO3)2 · 6H2O into Ca(NO3)2 solution as Mg2+ source before the precipitation step. The transition temperature from β-TCP to α-TCP increases with the increase of Mg2+ content in β-TCMP. β-TCMP with 3 mol.% Mg2+ has β-TCP to α-TCP transition temperature above 1,300°C. Dense β-TCMP (3 mol.% Mg2+) ceramics (∼99.4% relative density) were produced by pressing the green bodies at 100 MPa and further sintering at 1,250°C for 2 h. The average compressive strength of dense β-TCP ceramics sintered at 1,100°C is ∼540 MPa, while that of β-TCMP (3 mol.% Mg2+) ceramics is ∼430 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. Peters, D. Reif, Mat-wiss u Werkstofftech 35, 203 (2004)

    Article  CAS  Google Scholar 

  2. N. Kondo, A. Ogose, K. Tokunaga, T. Ito, K. Arai, N. Kudo, H. Inoue, H. Irie, N. Endo, Biomaterials 26, 5600 (2005)

    Article  CAS  Google Scholar 

  3. H.E. Koepp, S. Schorlemmer, S. Kessler, R.E. Brenner, L. Claes, K.P. Günther, A.A. Ignatius, J. Biomed. Mater. Res. Part B Appl. Biomater. 70, 209 (2004)

    Article  CAS  Google Scholar 

  4. N. Matsushita, H. Terai, T. Okada, K. Nozaki, H. Inoue, S. Miyamoto, K. Takaoka, J. Biomed. Mater. Res. Part A 70, 450 (2004)

    Article  CAS  Google Scholar 

  5. P. Miranda, E. Saiz, K. Gryn, A.P. Tomsia, Acta Biomater. 2, 457 (2006)

    Article  Google Scholar 

  6. P.N. Kumta, C. Sfeir, D.H. Lee, D. Olton, D. Choi, Acta Biomater. 1, 65 (2005)

    Article  Google Scholar 

  7. R. Famery, N. Richard, P. Boch, Ceram. Int. 20, 327 (1994)

    Article  CAS  Google Scholar 

  8. M. Descamps, J.C. Hornez, A. Leriche, J. Eur. Ceram. Soc. 27, 2401 (2007)

    Article  CAS  Google Scholar 

  9. M. Yashima, A. Sakai, Chem. Phys. Lett. 372, 779 (2003)

    Article  CAS  Google Scholar 

  10. K. Itatani, M. Takahashi, F.S. Howell, M. Aizawa, J. Mater. Sci. Mater. Med. 13, 707 (2002)

    Article  CAS  Google Scholar 

  11. A. Tampieri, G. Celotti, F. Szontagh, E. Landi, J. Mater. Sci. Mater. Med. 8, 29–37 (1997)

    Article  CAS  Google Scholar 

  12. K. Itatani, T. Nishioka, S. Seike, F.S. Howell, A. Kishioka, M. Kinoshita, J. Am. Ceram. Soc. 77, 801 (1994)

    Article  CAS  Google Scholar 

  13. R. Enderle, F. Götz-Neunhoeffer, M. Göbbels, F.A. Müller, P. Greil, Biomaterials 26, 3379 (2005)

    Article  CAS  Google Scholar 

  14. D.M.B. Wolff, E.G. Ramalho, W. Acchar, Mater. Sci. Forum 530–531, 581 (2006)

    Article  Google Scholar 

  15. J. Marchi, A.C.S. Dantas, P. Greil, J.C. Bressiani, A.H.A. Bressiani, F.A. Müller, Mater. Res. Bull. 42, 1040 (2007)

    Article  CAS  Google Scholar 

  16. K.D. Groot, Bioceramics of Calcium Phosphate (CRC Press, Boca Raton, Florida, 1983)

  17. R. Lagier, C.A. Baud, Pathol. Res. Pract. 199, 329 (2003)

    Article  CAS  Google Scholar 

  18. L.M. Ryan, H.S. Cheung, R.Z. LeGeros, I.V. Kurup, J. Toth, P.R. Westfall, G.M. McCarthy, Calcif. Tissue Int. 65, 374 (1999)

    Article  CAS  Google Scholar 

  19. K.S. Vecchio, X. Zhang, J.B. Massie, M. Wang, C.W. Kim, Acta Biomater. 3, 785 (2007)

    Article  CAS  Google Scholar 

  20. A. Destainville, E. Champion, D. Bernache-Assollant, E. Laborde, Mater. Chem. Phys. 80, 269 (2003)

    Article  CAS  Google Scholar 

  21. J.J. Prieto Valdés, J. Ortiz López, G. Rueda Morales, G. Pacheco Malagon, V. Prieto Gortcheva, J. Mater. Sci. Mater. Med. 8, 297 (1997)

    Article  Google Scholar 

  22. I.R. Gibson, I. Rehman, S.M. Best, W. Bonfield, J. Mater. Sci. Mater. Med. 12, 799 (2000)

    Article  Google Scholar 

  23. S. Kannan, A.F. Lemos, J.H.G. Rocha, J.M.F. Ferreira, J. Am. Ceram. Soc. 89, 2757 (2006)

    Article  CAS  Google Scholar 

  24. J.C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates (Elsevier Science, Amsterdam, The Netherlands, 1994)

  25. C. Tardei, F. Grigore, I. Pasuk, S. Stoleriu, J. Optoelectron. Adv. Mater. (JOAM) 8, 568 (2006)

    CAS  Google Scholar 

  26. J.B. Wachtman, Mechanical Properties of Ceramics (Wiley-Interscience, New York, 1996)

  27. R. Menig, M.H. Meyers, M.A. Meyers, K.S. Vecchio, Mater. Sci. Eng. A 297, 203 (2001)

    Article  Google Scholar 

  28. R. Menig, M.H. Meyers, M.A. Meyers, K.S. Vecchio, Acta Mater. 48, 2383 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth S. Vecchio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Jiang, F., Groth, T. et al. Preparation, characterization and mechanical performance of dense β-TCP ceramics with/without magnesium substitution. J Mater Sci: Mater Med 19, 3063–3070 (2008). https://doi.org/10.1007/s10856-008-3442-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3442-1

Keywords

Navigation