Skip to main content
Log in

Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

One possible interesting way of designing a scaffold for bone tissue engineering is to base it on trying to mimic the biophysical structure of natural extracellular matrix (ECM). This work was developed in order to produce scaffolds for supporting bone cells. Nano and micro fiber combined scaffolds were originally produced from starch based biomaterials by means of a fiber bonding and a electrospinning, two step methodology. The cell culture studies with SaOs-2 human osteoblast-like cell line and rat bone marrow stromal cells demonstrated that presence of nanofibers influenced cell shape and cytoskeletal organization of the cells on the nano/micro combined scaffolds. Moreover, cell viability and Alkaline Phosphatase (ALP) activity for both cell types was found to be higher in nano/micro combined scaffolds than in control scaffolds based on fiber meshes without nanofibers.

Consequently, the developed structures are believed have a great potential on the 3D organization and guidance of cells that is provided for engineering of 3-dimensional bone tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. GOMES and R. L. REIS, Macromol. Biosci. 4 (2004) 737.

    Article  CAS  Google Scholar 

  2. X. LIU and P. X. MA, Annals of Biomedical Eng. 32 (2004) 477.

    Google Scholar 

  3. M. P. LUTOLF and J. A. HUBBELL, Nat. Biotechol. 23 (2005) 47.

    Article  CAS  Google Scholar 

  4. Z. M. HUANG, Y. Z. ZHANG, M. KOTAKI and S. RAMAKRISHNA, Composites Sci. and Technology 63 (2003) 2223

    CAS  Google Scholar 

  5. D. LI and Y. XIA, Advanced Mater. 16 (2004) 1151.

    CAS  Google Scholar 

  6. J. A. MATTHEWS, G. E. WNEK, D. G. SIMPSON and G. L. BOWLIN, Biomacromolecules 3 (2002) 232.

    Article  CAS  ISI  Google Scholar 

  7. K. OHKAWA, D. CHA, H. KIM, A. NISHIDA and H. YAMAMOTO, Macromol. Rapid Commun. 25 (2004) 1600.

    Article  CAS  Google Scholar 

  8. B. MIN, S. W. LEE, J. N. LIM, Y. YOU, T. S. LEE, P. H. KANG and W. H. PARK, Polymer 45 (2004) 7137.

    Article  CAS  ISI  Google Scholar 

  9. H. J. JIN, S. V. FRIDRIKH, G. C. RUTLEDGE and D. L. KAPLAN, Biomacromolecules 3 (2002) 1233.

    Article  CAS  ISI  Google Scholar 

  10. W. K. SON, J. H. YOUK, T. S. LEE and W. H. PARK, Polymer 45 (2004) 2959.

    Article  CAS  ISI  Google Scholar 

  11. W. LI, C. T. LAURENCIN, E. J. CATERSON, R. S. TUAN and F. K. KO, J. Biomed. Mater. Res. 60 (2002) 613.

    CAS  Google Scholar 

  12. F. YANG, R. MURUGAN, S. WANG and S. RAMAKRISHNA, Biomaterials 26 (2005) 2603.

    CAS  ISI  Google Scholar 

  13. H. YOSHIMOTO, Y. M. SHIN, H. TERAI and J.P. VACANTI, ibid. 24 (2003) 2077.

    Article  CAS  ISI  Google Scholar 

  14. W. LI, K. G. DANIELSON, P. G. ALEXANDER and R. S. TUAN, J. Biomed. Mater. Res. Part A 67A (2003) 1105.

    CAS  Google Scholar 

  15. S. KIDOAKI, I. K. KWON and T. MATSUDA, Biomaterials 26 (2005) 37.

    Article  CAS  ISI  Google Scholar 

  16. W. LI, R. TULI, X. HUANG, P. LAQUERRIERE and R. S. TUAN, ibid. 26 (2005) 5158.

    CAS  ISI  Google Scholar 

  17. H. JIN, J. CHEN, V. KARAGEORGIOU, G. H. ALTMAN and D. KAPLAN, ibid. 25 (2004) 1039.

    Article  CAS  ISI  Google Scholar 

  18. M. E. GOMES, R. L. REIS and A. M. CUNHA, Mater. Sci. Eng. C: Biomimet. Supramolec. Syst. 20 (2002) 19.

    Google Scholar 

  19. M. E. GOMES, V. I. SIKAVITSAS, E. BEHRAVESH, R. L. REIS and A. G. MIKOS, J. Biomed. Mater. Res. Part A 67A (2003) 87.

    Article  CAS  Google Scholar 

  20. F. ROSSO, A. GIORDANO, M. BARBARISI and A. BARBARISI, J. Cellul. Phys. 199 (2004) 174.

    CAS  Google Scholar 

  21. A. CURTIS and C. WILKINSON, Biomaterials 18 (1997) 1573.

    Article  CAS  ISI  Google Scholar 

  22. C. T. LAURENCIN, A. M. A. AMBROSIO, M. D. BORDEN and J. A. COOPER, Annu. Rev. Biomed. Eng. 1 (1999) 46.

    Article  Google Scholar 

  23. H. HARRIS, Clinica Chimica Acta 186 (1989) 133.

    ISI  Google Scholar 

  24. T. STIGBRAND “Present Status and Future Trends of Human Alkaline Phosphatases. Human Alkaline Phosphatases.” (Alan R. Liss, New York, 1984) p.3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tuzlakoglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tuzlakoglu, K., Bolgen, N., Salgado, A.J. et al. Nano- and micro-fiber combined scaffolds: A new architecture for bone tissue engineering. J Mater Sci: Mater Med 16, 1099–1104 (2005). https://doi.org/10.1007/s10856-005-4713-8

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-005-4713-8

Keywords

Navigation