Skip to main content

Advertisement

Log in

Biomimetic magnetic-responsive cilia-like soft device: surface energy control and external field actuation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Many natural systems that are capable of self-regulated, autonomous controlling their shapes, generally match or even exceed the performance of rigid robotic systems. Currently, designing biomimetic soft devices by mimicking the natural intelligence with tunable ability still remains a grand challenge. Herein, we demonstrate a novel biomimetic cilia-like soft device using the magnetic feedback of microrod arrays. Such cilia-like microrod arrays are fabricated by distributing Co nanoparticles into silicon-based polymer. The critical aspect ratio of the microrod arrays can reach 48.7, which is 5.4-times higher than original 9.1 through considerably reducing its surface energy. This large increase in critical aspect ratio will endow the microrods an excellent durability and ensure the posture recovery during the magnate-responsive actuation. Meanwhile, magnetic-responsive Co nanoparticles are aligned and concentrated in the top of each microrod, which leads to the differentiated elastic modulus and ultimate strength along the length. Thereby, as the magnetic field intensity increases, the microrod arrays autonomously perform correspondingly reversible bending deformation without collapse, successfully achieving remotely controlled magnetic actuation. Therefore, this work opens up a new avenue towards soft, autonomous smart devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. Battle, C.M. Ott, D.T. Burnette, J. Lippincott-Schwartz, C.F. Schmidt, Intracellular and extracellular forces drive primary cilia movement. Proc. Natl. Acad. Sci. 112, 1410–1415 (2015)

    Article  Google Scholar 

  2. A. Bhattacharya, G.A. Buxton, O.B. Usta, A.C. Balazs, Propulsion and trapping of microparticles by active cilia arrays. Langmuir 28, 3217–3226 (2012)

    Article  Google Scholar 

  3. P.J. Glazer, J. Leuven, H. An, S.G. Lemay, E. Mendes, Multi-stimuli responsive hydrogel cilia. Adv. Funct. Mater. 23, 2964–2970 (2013)

    Article  Google Scholar 

  4. Q. Zhao, Y. Wang, Y. Yan, J.B. Huang, Smart nanocarrier: self-assembly of bacteria-like vesicles with photoswitchable cilia. ACS Nano 8, 11341–11349 (2014)

    Article  Google Scholar 

  5. M. Baltussen, P. Anderson, F. Bos, J. den Toonder, Inertial flow effects in a micro-mixer based on artificial cilia. Lab Chip 9, 2326–2331 (2009)

    Article  Google Scholar 

  6. T. Masuda, A.M. Akimoto, K. Nagase, T. Okano, R. Yoshida, Artificial cilia as autonomous nanoactuators: design of a gradient self-oscillating polymer brush with controlled unidirectional motion. Sci. Adv. 2, 1600902 (2016)

    Article  Google Scholar 

  7. Q. Xu, Y. Wan, T.S. Hu, T.X. Liu, D. Tao, P.H. Niewiarowski, Y. Tian, Y. Liu, L. Dai, Y. Yang, Z. Xia, Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics. Nat. Commun. 6, 8949 (2015)

    Article  Google Scholar 

  8. S. Zhang, Y. Wang, R. Lavrijsen, P.R. Onck, J.M.J. den Toonder, Versatile microfluidic flow generated by moulded magnetic artificial cilia. Sens. Actuators, B 263, 614–624 (2018)

    Article  Google Scholar 

  9. S. Khaderi, J. Hussong, J. Westerweel, J.Den Toonder, P. Onck, Fluid propulsion using magnetically-actuated artificial cilia—experiments and simulations. RSC Adv. 3, 12735 (2013)

    Article  Google Scholar 

  10. M. Kamperman, E. Kroner, A. del Campo, R.M. McMeeking, E. Arzt, Functional adhesive surfaces with “Gecko” effect: the concept of contact splitting. Adv. Eng. Mater. 12, 335–348 (2010)

    Article  Google Scholar 

  11. A. Grinthal, S.H. Kang, A.K. Epstein, M. Aizenberg, M. Khan, J. Aizenberg, Steering nanofibers: an integrative approach to bio-inspired fiber fabrication and assembly. Nano Today 7, 35–52 (2011)

    Article  Google Scholar 

  12. H. Shahsavan, L. Yu, A. Jákli, B. Zhao, Smart biomimetic micro/nanostructures based on liquid crystal elastomers and networks. Soft Matter 13, 8006–8022 (2017)

    Article  Google Scholar 

  13. S.B. Rahane, J.A. Floyd, A.T. Metters, S.M. Kilbey, Swelling behavior of multiresponsive poly (methacrylic acid)-block--poly (N-isopropylacrylamide) brushes synthesized using surface-initiated photoiniferter-mediated photopolymerization. Adv. Funct. Mater. 18, 1232–1240 (2008)

    Article  Google Scholar 

  14. C.L. Van Oosten, C.W. Bastiaansen, D.J. Broer, Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat. Mater. 8, 677–682 (2009)

    Article  Google Scholar 

  15. M. Onoda, T. Ueki, R. Tamate, M. Shibayama, R. Yoshida, Amoeba-like self-oscillating polymeric fluids with autonomous sol-gel transition. Nat. Commun. 8, 15862 (2017)

    Article  Google Scholar 

  16. E.H. Kerner, The elastic and thermoelastic properties of composite media. Proc. Phys. Soc. B 69, 808–813 (1956)

    Article  Google Scholar 

  17. A.Y. Coran, Thermoplastic elastomeric rubber-plastic blends, in Handbook of elastomers—new development and technology, ed. by A.K. Bhowmick, H.L. Stephens (Marcel Dekker Inc., New York, 1988), pp. 249–260

    Google Scholar 

  18. L. Nicolais, M. Narkis, Stress–strain behaviors of SAN/glass bead composites in the glassy region. Polym. Eng. Sci. 11, 194–199 (1971)

    Article  Google Scholar 

  19. B. Pukanszky, G. Voros, Mechanism of interfacial interactions in particulate filled composites. Compos. Interfaces 1, 411–427 (1993)

    Google Scholar 

  20. H. Liu, B. Lei, W. Jiang, Y. Li, L. Yin, B. Chen, Y. Shi, Ultrasound-assisted recovery of free-standing high-aspect-ratio micropillars. RSC Adv. 6, 16640–16644 (2016)

    Article  Google Scholar 

  21. H. Lei, J. Xiao, L. Zheng, M. Xiong, Y. Zhu, J. Qian, Q. Zhuang, Z. Han, Superhydrophobic coatings based on colloid silica and fluorocopolymer. Polymer 86, 22–31 (2016)

    Article  Google Scholar 

  22. M.K. Chaudhury, T. Weaver, C.Y. Hui, Adhesive contact of cylindrical lens and a flat sheet. J. Appl. Phys. 80, 30–37 (1996)

    Article  Google Scholar 

  23. P. Roca-Cusachs, F. Rico, E. Martínez, J. Toset, R. Farré, D. Navajas, Stability of microfabricated high aspect ratio structures in poly(dimethylsiloxane). Langmuir 21, 5542–5548 (2005)

    Article  Google Scholar 

  24. B.A. Evans, A.R. Shields, R.L. Carroll, S. Washburn, M.R. Falvo, R. Superfine, Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett. 7, 1428–1434 (2007)

    Article  Google Scholar 

  25. D. Fragouli, R. Buonsanti, G. Bertoni, C. Sangregorio, C. Innocenti, A. Falqui, D. Gatteschi, P.D. Cozzoli, A. Athanassiou, R. Cingolani, Dynamical formation of spatially localized arrays of aligned nanowires in plastic films with magnetic anisotropy. ACS Nano 4, 1873–1878 (2010)

    Article  Google Scholar 

  26. L.O. Mair, B.A. Evans, A. Nacev, P.Y. Stepanov, R. Hilaman, S. Chowdhury, S. Jafari, W. Wang, B. Shapiro, I.N. Weinberg, Magnetic microkayaks: propulsion of microrods precessing near a surface by kilohertz frequency, rotating magnetic fields. Nanoscale 9, 3375–3381 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China [Grant Nos. 51705406, 51625504, 51675421, 51705407, 91748209]; the Postdoctoral Science Foundation of China [Grant No. 2016M600785]; and the Postdoctoral Science Foundation of Shaanxi Province [Grant No. 2016BSHEDZZ126]. The author also appreciates the support of the National Key Research and Development Plan for Major Scientific Instruments [Grant No. 2016YFF0100700] and the National Science and Technology Major Project [Grant Nos. 2016ZX04002003-005, and 2016ZX04002004-007].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lanlan Wang or Hongzhong Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Wang, L., Ye, G. et al. Biomimetic magnetic-responsive cilia-like soft device: surface energy control and external field actuation. J Mater Sci: Mater Electron 30, 3767–3772 (2019). https://doi.org/10.1007/s10854-018-00659-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00659-1

Navigation