Skip to main content
Log in

Ion valence state and magnetic origin of PbPd1−xNixO2 nanograin films with a high-temperature ferromagnetism

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The PbPd1 − xNi x O2 nanograin films with different Ni-doping levels (x = 0.037–0.150) were synthesized by the sol–gel spin-coating method and an oxidation treatment. The films with a thickness of about 210 nm were found to be single phase with a body-centered orthorhombic structure and to possess a large number of Pb vacancies. High-temperature ferromagnetism discovered in these films can be maintained above 380 K. Paramagnetism was also found in the films with high Ni-doping levels. The analysis on the XANES spectra and their first derivatives offered the evidences for the facts that the film’s ferromagnetism is intrinsic and the increase in the Pb valence from 2+ towards 4+, caused by the appearance of large amount of Pb vacancies and low electronegativity of Pb2+ ion, provides magnetic moments to the film’s magnetism. A carrier-mediated mechanism bridged to the bound magnetic polaron model based on the Pb vacancies, the doped Ni ions and the Pb ions with a valence higher than 2+ was adopted to interpret the origin of the magnetism within these PbPd1 − xNi x O2 nanograin films. The variation of the specific area of the grain boundary was believed to have a great influence on the proportions of the film’s ferromagnetism and paramagnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Science 294, 1488 (2001)

    Article  Google Scholar 

  2. C. Liu, F. Yun, H. Morkoc, J. Mater. Sci. 16, 555 (2005)

    Google Scholar 

  3. X.L. Wang, Phys. Rev. Lett. 100, 156404 (2008)

    Article  Google Scholar 

  4. X. Chen, Y. Chen, Y.M. Yang, H. Jia, J.M. Zhang, S.Y. Chen, Z.G. Huang, Ceram. Int. 43, 10428 (2017)

    Article  Google Scholar 

  5. K.J. Lee, S.M. Choo, J.B. Yoon, K.M. Song, Y. Saiga, C.-Y. You, N. Hur, S.I. Lee, T. Takabatake, M.H. Jung, J. Appl. Phys. 107, 09C306 (2010)

    Article  Google Scholar 

  6. K.J. Lee, S.M. Choo, Y. Saiga, T. Takabatake, M.H. Jung, J. Appl. Phys. 109, 07C16 (2011)

    Google Scholar 

  7. S.W. Chen, S.C. Huang, G.Y. Guo, S. Chiang, J.M. Lee, S.A. Chen, S.C. Haw, K.T. Lu, J.M. Chen, Appl. Phys. Lett. 101, 222104 (2012)

    Article  Google Scholar 

  8. S.M. Choo, K.J. Lee, S.M. Park, G.S. Park, M.H. Jung, J. Appl. Phys. 113, 014904 (2013)

    Article  Google Scholar 

  9. K.J. Lee, S.M. Choo, M.H. Jung, Appl. Phys. Lett. 106, 072406 (2015)

    Article  Google Scholar 

  10. H.L. Su, S.Y. Huang, Y.F. Chiang, J.C.A. Huang, C.C. Kuo, Y.W. Du, Y.C. Wu, R.Z. Zuo, Appl. Phys. Lett. 99, 102508 (2011)

    Article  Google Scholar 

  11. F.L. Tang, C. Mei, P.Y. Chuang, T.T. Song, H.L. Su, Y.C. Wu, Y.R. Qiao, J.C.A. Huang, Y.F. Liao, Thin Solid Films 623, 14 (2017)

    Article  Google Scholar 

  12. J. Liu, C. Mei, P.Y. Chuang, T.T. Song, F.L. Tang, H.L. Su, J.C.A. Huang, Y.C. Wu, Ceram. Int. 42, 15762 (2016)

    Article  Google Scholar 

  13. T.T. Song, F.L. Tang, H.L. Su, P.Y. Chuang, J. Liu, C. Mei, S.Y. Huang, M.K. Lee, J.C.A. Huang, Y.C. Wu, J. Magn. Magn. Mater. 407, 37 (2016)

    Article  Google Scholar 

  14. F.L. Tang, J. Liu, C. Mei, S.Y. Huang, T.T. Song, H.L. Su, M.K. Lee, Y.C. Wu, J.C.A. Huang, RSC Adv. 6, 37522 (2016)

    Article  Google Scholar 

  15. C. Mei, J. Liu, P.Y. Chuang, T.T. Song, F.L. Tang, H.L. Su, J.C.A. Huang, Y.C. Wu, Ceram. Int. 43, 1997 (2017)

    Article  Google Scholar 

  16. B.B. Straumal, S.G. Protasova, A.A. Mazilkin, E. Goering, G. Schütz, P.B. Straumal, B. Baretzky, Beilstein J. Nanotechnol. 7, 1936 (2016)

    Article  Google Scholar 

  17. B.B. Straumal, A.A. Mazilkin, S.G. Protasova, A.A. Myatiev, P.B. Straumal, G. Schütz, P.A.V. Aken, E. Goering, B. Baretzky, Phys. Rev. B 79, 205206 (2009)

    Article  Google Scholar 

  18. B.B. Straumal, A.A. Mazilkin, S.G. Protasova, S.V. Stakhanova, P.B. Straumal, M.F. Bulatov, G. Schütz, T. Tietze, E. Goering, B. Baretzky, Rev. Adv. Mater. Sci. 41, 61 (2015)

    Google Scholar 

  19. H.S. Hsu, J.C.A. Huang, S.F. Chen, C.P. Liu, Appl. Phys. Lett. 90, 102506 (2007)

    Article  Google Scholar 

  20. A.A.S. Devi, I.S. Roqan, RSC Adv. 6, 50818 (2016)

    Article  Google Scholar 

  21. N. Akdogan, H. Zabel, A. NeFedov, K. Westerholt, H.W. Becker, S. Gők, R. Khaibullin, L. Tagirov, J. Appl. Phys. 105, 043907 (2009)

    Article  Google Scholar 

  22. Y.J. Kang, D.S. Kim, S.H. Lee, J. Park, J. Phys. Chem. C 111, 14956 (2007)

    Article  Google Scholar 

  23. D.A. Schwartz, K.R. Kittilstved, D.R. Gamelin, Appl. Phys. Lett. 85, 1395 (2004)

    Article  Google Scholar 

  24. K. Fujii, N. Ishimatsu, H. Maruyama, T. Shishidou, S. Hayakawa, N. Kawamura, Phys. Rev. B 95, 024116 (2017)

    Article  Google Scholar 

  25. Y.Z. Zhou, J.S. Chen, B.K. Tay, J.F. Hu, G.M. Chow, T. Liu, P. Yang, Appl. Phys. Lett. 90, 043111 (2007)

    Article  Google Scholar 

  26. Y.L. Wei, Y.W. Yang, J.F. Lee, J. Electron. Spectrosc. 144, 299 (2005)

    Article  Google Scholar 

  27. F.L. Tang, H.L. Su, S.Y. Huang, Y.C. Wu, J.C.A. Huang, Y.W. Du, X.L. Huang, Y. Jin, J. Alloy. Compd. 617, 322 (2014)

    Article  Google Scholar 

  28. Y.H. Yu, T. Tyliszczak, A.P. Hitchcock, J. Phys. Chem. Solids 51, 445 (1990)

    Article  Google Scholar 

  29. G. Srinet, R. Kumar, V. Sajal, J. Appl. Phys. 114, 033912 (2013)

    Article  Google Scholar 

  30. Y.H. Lee, J.C. Lee, J.F. Min, C.W. Su, J. Magn. Magn. Mater. 323, 1846 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 11274086), the National Science Council of Taiwan (No. NSC 100-2112-M-006-018-MY3) and the Open Research Fund of Jiangsu Provincial Key Laboratory for Nanotechnology, Nanjing University (No. 2015–2016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. L. Su, J. C. A. Huang or Y. C. Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, C., Liu, J., Qiu, E.B. et al. Ion valence state and magnetic origin of PbPd1−xNixO2 nanograin films with a high-temperature ferromagnetism. J Mater Sci: Mater Electron 29, 4835–4841 (2018). https://doi.org/10.1007/s10854-017-8439-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8439-4

Navigation