Skip to main content
Log in

Photosensing properties of pentacene thin film transistor with solution-processed silicon dioxide/graphene oxide bilayer insulators

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the photoresponse properties are investigated for the pentacene thin film transistor with solution-processed silicon dioxide/graphene oxide (GO) bilayer insulators. The GO is synthesized by a modified Hummers method. It is determined that the electrical characteristics and photosensing parameters of the thin film transistor under dark and white light illuminations. The mobility µ value (3.752 × 10−1 cm2/Vs) of the thin film transistor under dark is lower than that of the value (4.557 × 10−1 cm2/Vs) under 100 mW/cm2 illumination. The interface trap density of the transistor is reduced with the rise various illuminations. The photoresponse of the thin film transistor with dioxide/GO bilayer insulators in the on state is lower than that of the thin film transistor in the off state. The photoresponse characteristics indicate that the pentacene thin film transistor with solution-processed silicon dioxide/GO bilayer insulators exhibits a phototransistor characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum hall effect in graphene. Science 315, 1379 (2007)

    Article  Google Scholar 

  2. K.S. Novoselov, A.K. Geim et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197 (2005)

    Article  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666 (2004)

    Article  Google Scholar 

  4. C.E. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and ıntrinsic strength of monolayer graphene. Science 321, 385 (2008)

    Article  Google Scholar 

  5. J.S. Bunch, A.M. Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbum, H.G. Craighead, P.L. McEuen, Electromechanical resonators from graphene sheets. Science 315, 490 (2007)

    Article  Google Scholar 

  6. G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 3, 270 (2008)

    Article  Google Scholar 

  7. G. Eda, H.E. Unalan, N. Rupesinghe, G.A. Amaratunga, M. Chhowalla, Field emission from graphene based composite thin films. Appl. Phys. Lett. 93, 233502/1.43 (2008)

    Article  Google Scholar 

  8. Z.-S. Wu, S. Pei, W. Ren, D. Tang, L. Gao, B. Liu, F. Li, C. Liu, H.M. Cheng, Field emission of single-layer graphene films prepared by electrophoretic deposition. Adv. Mater. 21, 1 (2009)

    Google Scholar 

  9. M.D. Stoller, S. Park, Y. Zhu, R.S. Ruoff, Graphene-based ultracapacitors, carbon based electronics. Nano Lett. 8, 3498 (2008)

    Article  Google Scholar 

  10. P. Avouris, Z. Chen, V. Perebeinos, Carbon based electronics. Nat. Nanotechnol. 2, 605 (2007)

    Article  Google Scholar 

  11. S. Stankovi, A.D. Dmitriy, H.B.G. Dommet, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, T.N. SonBinh, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)

    Article  Google Scholar 

  12. G. Jo, M. Choe, C.Y. Cho, J.H. Kim, W. Park, S. Lee, W.K. Hong, T.W. Kim, S.J. Park, B.H. Hong, Y.H. Kahng, T. Lee, Large-scale patterned multi-layer graphene films as transparent conducting electrodes for GaN light-emitting diodes. Nanotechnology 21, 175201 (2010)

    Article  Google Scholar 

  13. X. Zhao, Q. Zhang, Y. Hao, Y. Li, Y. Fang, D. Chen, Alternate multilayer films of poly (vinyl alcohol) and exfoliated graphene oxide fabricated via a facile layer-by-layer assembly. Marcomolecules 43, 9411–9416 (2010)

    Article  Google Scholar 

  14. M. Jin, H.K. Jeong, W.J. Yu, D.J. Bae, B.R. Kang, Y.H. Lee, Graphene oxide thin film field effect transistor without reduction. J. Phys. D Appl. Phys. 42, 135109 (2009)

    Article  Google Scholar 

  15. W.E. Howard, in Organic Field-Effect Transistors, ed. by Z. Bao, J. Locklin (New York, USA, 2007)

    Google Scholar 

  16. G.X. Wang, X.P. Shen, J. Yao, J. Park, Nanoparticle/graphene composites: toward high-performance anode materials for lithium-ion batteries. Carbon 47, 2049 (2009)

    Article  Google Scholar 

  17. İ. Karteri, Ş. Karataş, F. Yakuphanoğlu, Electrical characterization of graphene oxide and organic dielectric layers based on thin film transistor. Appl. Surf. Sci. 318, 74–78 (2014)

    Article  Google Scholar 

  18. D. Gupta, N. Jeon, S. Yoo, Modeling the electrical characteristics of TIPS-pentacene thin-film transistors: effect of contact barrier, field-dependent mobility, and traps. Org. Electron. 9, 1026 (2008)

    Article  Google Scholar 

  19. Y. Xu, T. Minari, K. Tsukagoshi, R. Gwoziecki, R. Coppard, M. Benwadih, J. Chroboczek, F. Balestra, G. Ghibaudo, Modeling of static electrical properties in organic field-effect transistors. J. Appl. Phys. 110, 014510 (2011)

    Article  Google Scholar 

  20. C.T. Hsieh, S.-M. Hsu, J.-Y. Lin, H. Teng, Birefringence in hydrogen-bond-directed self-assembly of guanine in DNA quadruplexes. J. Phys. Chem. C 115, 12367 (2011)

    Article  Google Scholar 

  21. T.T. Wu, J.M. Ting, Preparation and characteristics of graphene oxide and its thin films. Surf. Coat. Technol. 231, 487–491 (2013)

    Article  Google Scholar 

  22. Y. Xu, H. Bai, G. Lu, C. Li, G. Shi, Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130, 5856 (2008)

    Article  Google Scholar 

  23. L. Xiaolin, Z. Guangyu, B. Xuedong, S. Xiaoming, W. Xinran, W. Enge, D. Hongjie, Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 3, 538 (2008)

    Article  Google Scholar 

  24. H. Karaagac, E. Yengel, M. SaifIslam, Physical properties and heterojunction device demonstration of aluminum-doped ZnO thin films synthesized at room ambient via sol–gel method. J. Alloys Compd. 521, 155–162 (2012)

    Article  Google Scholar 

  25. A.A. Al-Ghamdi, O.A. Al-Hartomy, M. El Okr, A.M. Nawar, S. El-Gazzar, F. El-Tantawy, F. Yakuphanoglu, Semiconducting properties of Al doped ZnO thin films. Spectrochim. Acta A Mol. Biomol. Spectrosc. 131, 512–517 (2014)

    Article  Google Scholar 

  26. S. Lin, H. Tang, Z. Ye, H. He, Y.J. Zeng, B. Zhao, L. Zhu, Synthesis of vertically aligned Al-doped ZnO nanorods array with controllable Al concentration. Mater. Lett. 62(4), 603–606 (2008)

    Article  Google Scholar 

  27. C.L. Tsai, Y.J. Lin, C.J. Liu, L. Horng, Y.T. Shih, M.S. Wang, C.S. Huang, C.S. Jhang, Y.H. Chen, H.C. Chang, Structural, electrical, optical and magnetic properties of Co0.2AlxZn0.8–xO films. Appl. Surf. Sci. 255, 8643–8647 (2009)

    Article  Google Scholar 

  28. G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, M. Chhowalla, Insulator to semimetal transition in graphene oxide. J. Phys. Chem. C 113, 15768 (2009)

    Article  Google Scholar 

  29. F.A. Chowdhury, T. Morisaki, J. Otsuki, M.S. Alam, Annealing effect on the optoelectronic properties of graphene oxide thin films. Appl. Nano Sci. 3, 477–483 (2012)

    Article  Google Scholar 

  30. B. Gunduz, F. Yakuphanoglu, Effects of UV and white light illuminations on photosensing properties of the 6,13-bis(triisopropylsilylethynyl)pentacene thin film transistor. Sens. Actuators A 178, 141–153 (2012)

    Article  Google Scholar 

  31. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981)

    Google Scholar 

  32. G. Horowitz, P. Delannoy, Modeling of static electrical properties in organic field-effect transistors. J. Appl. Phys. 70, 469 (1991)

    Article  Google Scholar 

  33. M. Shur, Physics of Semiconductor Devices (Prentice-Hall, Englewood Cliffs, 1990)

    Google Scholar 

  34. J.H. Kwon, M.H. Chung, T.Y. Oh, H.S. Bae, J.H. Park, B.K. Ju, F. Yakuphanoglu, High-mobility pentacene thin-film phototransistor with poly-4-vinylphenol gate dielectric. Sens. Actuators A 156, 312 (2009)

    Article  Google Scholar 

  35. F. Yakuphanoglu, W.A. Farooq, Threshold voltage control of 2,3 benzanthracene organic thin-film transistor by visible light for integration of transistors into electronic circuits. Synth. Met. 161, 51 (2011)

    Article  Google Scholar 

  36. D. Guo, S. Entani, S. Ikeda, K. Saiki, Effect of UV/ozone treatment of the dielectric layer on the device performance of pentacene thin film transistors. Chem. Phys. Lett. 429, 124 (2006)

    Article  Google Scholar 

  37. Y. Park, D. Gupta, C. Lee, Y. Hong, Role of tunneling layer in graphene-oxide based organic nonvolatile memory transistors. Org. Electron. 13, 2887–2892 (2012)

    Article  Google Scholar 

  38. T.W. Kim, Y. Gao, O. Acton, H.L. Yip, H. Ma, H. Chen, A.K.Y. Jen, Graphene oxide nanosheets based organic field effect transistor for nonvolatile memory applications. Appl. Phys. Lett. 97, 023310 (2010)

    Article  Google Scholar 

  39. G. Jo, M. Choe, S. Lee, W. Park, Y.H. Kahng, T. Lee, The application of graphene as electrodes in electrical and optical devices. Nanotechnology 23(19), 112001 (2012)

    Article  Google Scholar 

  40. S. Lee, G. Jo, S.J. Kang, G. Wang, M. Choe, W. Park, D.Y. Kim, Y.H. Kahng, T. Lee, Enhanced charge injection in pentacene field-effect transistors with graphene electrodes. Adv. Mater. 23, 100–105 (2011)

    Article  Google Scholar 

  41. M.M. Ibrahim, A.C. Maciel, C.P. Watson, M.B. Madec, S.G. Yeates, D.M. Taylor, Thermo-mechanical stabilisation of a crystalline organic semiconductor for robust large area electronics. Org. Electron. 11, 1234 (2010)

    Article  Google Scholar 

  42. T. Ohe, M. Kuribayashi, A. Tsuboi, K. Satori, M. Itabashi, K. Nomoto, Organic thin-film transistors with phase separation of polymer-blend small-molecule semiconductors: dependence on molecular weight and types of polymer. Appl. Phys. Express 2, 121502 (2009)

    Article  Google Scholar 

  43. K. Kima, N. Kwon, I. Chung, Characterization of 6,13-bis(triisopropylsilylethynyl) pentacene organic thin film transistors fabricated using pattern-induced confined structure. Thin Solid Films 550, 689–695 (2014)

    Article  Google Scholar 

  44. H. Guia, B. Weib, J. Wangb, Inserting a Mn-doped TiO2 layer for improving performance of pentacene organic thin-film transistors. Org. Electron. 15, 3349–3353 (2014)

    Article  Google Scholar 

  45. J. Changa, S. Maoa, Y. Zhanga, S. Cuia, D.A. Steeberb, J. Chena, Single-walled carbon nanotube field-effect transistors with graphene oxide passivation for fast, sensitive, and selective protein detection. Biosens. Bioelectron. 42, 186–192 (2013)

    Article  Google Scholar 

  46. S. Chung, S.O. Kim, S.K. Kwon, C. Lee, Y. Hong, All-inkjet-printed organic thinfilm transistor inverter on flexible plastic substrate. IEEE Electron. Dev. Lett. 32, 8 (2011)

    Google Scholar 

  47. F. Yakuphanoglu, B. Gunduz, Effects of channel widths, thicknesses of active layer on the electrical and photosensing properties of the 6,13-bis(triisopropylsilylethynyl) pentacene transistors by thermal evaporation method: comparison study. Synth. Met. 162, 1210–1239 (2012)

    Article  Google Scholar 

  48. S. Okur, F. Yakuphanoglu, E. Stathatos, High-mobility pentacene phototransistor with nanostructured SiO2 gate dielectric synthesized by sol–gel method. Microelectron. Eng. 87, 635 (2010)

    Article  Google Scholar 

  49. L.A. Majewski, M. Grell, Organic field-effect transistors with ultrathin modified gate insulator. Synth. Met. 151, 175 (2005)

    Article  Google Scholar 

  50. S. Lee, S.J. Kang, G. Jo, M. Choe, W. Park et al., Enhanced characteristics of pentacene field-effect transistors with graphene electrodes and substrate treatments. Appl. Phys. Lett. 99, 083306 (2011)

    Article  Google Scholar 

  51. J.A. Lim, W.H. Lee, D. Kwak, K. Cho, Evaporation-induced self-organization of inkjet-printed organic semiconductors on surface-modified dielectrics for high-performance organic transistors. Langmuir 25(9), 5404 (2009)

    Article  Google Scholar 

  52. B. Gunduz, O.A. Al-Hartomy, S.A.F. Al Said, A.A. Al-Ghamdi, F. Yakuphanoglu, Controlling of photoresponse properties of pentacene thin film phototransistors by dielectric layer thickness and channel widths. Synth. Met. 179, 94–115 (2013)

    Article  Google Scholar 

  53. G. Horowitz, Tunneling current in polycrystalline organic thin-film transistors. Adv. Funct. Mater. 13, 53 (2003)

    Article  Google Scholar 

  54. R.N. Christopher, C.D. Frisbie, D.A. da Silva Filho, J.L. Bredas, C.E. Paul, R.M. Kent, Introduction to organic thin film transistors and design of n-channel organic semiconductors. Chem. Mater. 16, 4436 (2004)

    Article  Google Scholar 

  55. F. Yakuphanoglu, W.A. Farooq, Flexible pentacene organic field-effect phototransistor. Synth. Met. 161, 379 (2011)

    Article  Google Scholar 

  56. K.P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D.J. Gundlach, B. Batlogg, A.N. Rashid, G. Schitter, Threshold voltage shift in organic field effect transistors by dipole monolayers on the gate insulator. J. Appl. Phys. 96(11), 6431 (2004)

    Article  Google Scholar 

  57. J.B. Kim, C.F. Hernandez, D.K. Hwang, S.P. Tiwari, W.J. Potscavage, B. Kippelen, Org. Electron. 12, 1132 (2011)

    Article  Google Scholar 

  58. J.D. Gallezot, S. Martin, J. Kanicki, In: Proceedings of International Display Research Conference (IDRC), p. 407 (2001)

  59. R.H. Bube, Photoconductivity of Solids (Wiley, New York, 1960)

    Google Scholar 

  60. A. Rose, Concepts in Photoconductivity (Interscience, New York, 1960)

    Google Scholar 

  61. Y. Chao, J.H. Cho, J.H. Ahn, Graphene-based flexible and stretchable thin film transistors. Nanoscale 4, 4870–4882 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Kahramanmaraş Sütçü İmam University for financial support of the research program. (Project No: 2012/2-7D). This study also was partially supported by TUBITAK-2233 National Research Fellowship Programme and TUBİTAK-2211-C Fellowship Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Karteri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karteri, İ., Karataş, Ş. & Yakuphanoglu, F. Photosensing properties of pentacene thin film transistor with solution-processed silicon dioxide/graphene oxide bilayer insulators. J Mater Sci: Mater Electron 27, 5284–5293 (2016). https://doi.org/10.1007/s10854-016-4426-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4426-4

Keywords

Navigation