Skip to main content

Advertisement

Log in

Graphene-like membrane supported MnO2 nanospheres for supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Manganese dioxide/graphene composite is receiving intensive attention because of its potential applications in energy storage field. In this paper, a novel MnO2 nanocomposite material for high performance supercapacitor was prepared in situ on graphene-like membrane using liquid-polyacrylonitrile as the carbon source. Successful composite formation was confirmed and textural properties were obtained from XRD, FTIR and Raman spectra studies. Morphological characterizations of the nanocomposite were investigated by FE-SEM and TEM measurements. For capacitive properties tests, cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy were carried out in a three-electrode system with a working potential window from 0 to 1 V. The results show that the membrane has a typical graphene-like layer carbon structure. Moreover, the electrochemical performance reveals that the average capacitance of the composite at the mass fraction of graphene-like membrane of 30 % is as high as 302 F g−1 at 1 A g−1 in 1 mol L−1 Na2SO4 electrolyte, which permit excellent performance as electrode materials for supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, Nat. Mater. 7, 845–854 (2008)

    Article  Google Scholar 

  2. A.L.M. Reddy, F.E. Amitha, I. Jafri, S. Ramaprabhu, Nanoscale Res. Lett. 3, 145–151 (2008)

    Article  Google Scholar 

  3. H.F. Jiu, C.S. Huang, L.X. Zhang, J.X. Chang, H.Q. Jiao, S.M. Zhang, W.B. Jia, J. Mater. Sci. Mater. Electron. 26, 8386–8393 (2015)

    Article  Google Scholar 

  4. A. Burke, J. Power Sources 91, 37–50 (2000)

    Article  Google Scholar 

  5. H. Jiang, J. Ma, C.Z. Li, Adv. Mater. 24, 4197–4202 (2012)

    Article  Google Scholar 

  6. L. Jiang, J.W. Yan, Y. Zhou, L.X. Hao, R. Xue, L. Jiang, B.L. Yi, J. Solid State Electrochem. 17, 2949–2958 (2013)

    Article  Google Scholar 

  7. H. Zhang, G. Cao, W. Wang, K. Yuan, B. Xu, W. Zhang, J. Cheng, Y. Yang, Electrochim. Acta 54, 1153–1159 (2009)

    Article  Google Scholar 

  8. S.L. Chou, J.Z. Wang, S.Y. Chew, H.K. Liu, S.X. Dou, Electrochem. Commun. 10, 1724–1727 (2008)

    Article  Google Scholar 

  9. M. Kim, Y. Hwang, J. Kim, Chem. Eng. J. 230, 482–490 (2013)

    Article  Google Scholar 

  10. J. Yan, Z. Fan, T. Wei, W. Qian, M. Zhang, F. Wei, Carbon 48, 3825–3833 (2010)

    Article  Google Scholar 

  11. S.H. Li, Q.H. Liu, L. Qi, L.H. Lu, H.Y. Wang, Chin. J. Anal. Chem. 40, 339–346 (2012)

    Article  Google Scholar 

  12. A.E. Fischer, K.A. Pettigrew, D.R. Rolison, R.M. Stroud, J.W. Long, Nano Lett. 7, 281–286 (2007)

    Article  Google Scholar 

  13. X.H. Lu, D.Z. Zheng, T. Zhai, Z.Q. Liu, Y.Y. Huang, S.L. Xie, Y.X. Tong, Energy Environ. Sci. 4, 2915–2921 (2011)

    Article  Google Scholar 

  14. K.H. Ye, Z.Q. Liu, C.W. Xu, N. Li, Y.B. Chen, Y.Z. Su, Inorg. Chem. Commun. 30, 1–4 (2013)

    Article  Google Scholar 

  15. V. Singh, D. Joung, L. Zhai, S. Das, S. Khondaker, S. Seal, Prog. Mater. Sci. 56, 1178–1271 (2011)

    Article  Google Scholar 

  16. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, H. Dai, Phys. Rev. Lett. 100, 206803 (2008)

    Article  Google Scholar 

  17. Y. Qian, S.B. Lu, F.L. Gao, J. Mater. Sci. 46, 3517–3522 (2011)

    Article  Google Scholar 

  18. J.Y. Zhu, J.H. He, A.C.S. Appl, Mater. Interfaces 4, 1770–1776 (2012)

    Article  Google Scholar 

  19. M. Kim, Y. Hwang, J. Kim, J. Mater. Sci. 48, 7652–7663 (2013)

    Article  Google Scholar 

  20. H.I. Joh, H.K. Song, C.H. Lee, J.M. Yun, S.M. Jo, S. Lee, S.I. Na, A.T. Chien, S. Kumar, Carbon 70, 308–312 (2014)

    Article  Google Scholar 

  21. C.K. Liu, K. Lai, W. Liu, M. Yao, R.J. Sun, Polym. Int. 58, 1341–1349 (2009)

    Article  Google Scholar 

  22. S.K. Nataraj, K.S. Yang, T.M. Aminabhavi, Prog. Polym. Sci. 37, 487–513 (2012)

    Article  Google Scholar 

  23. H. Zhuo, S. Wan, C. He, Q. Zhang, C. Li, D. Gui, C. Zhu, H. Niu, J. Liu, J. Power Sources 247, 721–728 (2014)

    Article  Google Scholar 

  24. D. Gui, C. Liu, F. Chen, J. Liu, Appl. Surf. Sci. 307, 172–177 (2014)

    Article  Google Scholar 

  25. L.G. Cancado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio, Phys. Rev. Lett. 93, 247401 (2004)

    Article  Google Scholar 

  26. H. Chen, J. He, C. Zhang, H. He, J. Phys. Chem. C 111, 18033–18038 (2007)

    Article  Google Scholar 

  27. C.L. Liu, D.Y. Gui, J.H. Liu, Chem. Phys. Lett. 614, 123–128 (2014)

    Article  Google Scholar 

  28. Z. Ni, Y. Wang, T. Yu, Z. Shen, Nano Res. 1, 273–291 (2008)

    Article  Google Scholar 

  29. T. Gao, M. Glerup, F. Krumeich, R. Nesper, H. Fjellvag, P. Norby, J. Phys. Chem. C 112, 13134–13140 (2008)

    Article  Google Scholar 

  30. M.S. Wu, C.J. Lin, C.L. Ho, Electrochim. Acta 81, 44–48 (2012)

    Article  Google Scholar 

  31. Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, J. Phys. Chem. C 113, 13103–13107 (2009)

    Article  Google Scholar 

  32. X. Xie, L. Gao, Carbon 45, 2365–2373 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

Support from the National Basic Research Program of China (Program 973) (No. 2011CB605603), the Basic Research Project of Shenzhen (No. JCYJ20140418091413509) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayong Gui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, D., Chen, W., Liu, C. et al. Graphene-like membrane supported MnO2 nanospheres for supercapacitor. J Mater Sci: Mater Electron 27, 5121–5127 (2016). https://doi.org/10.1007/s10854-016-4403-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4403-y

Keywords

Navigation