Skip to main content
Log in

Role of diffusion-annealing time on the superconducting, microstructural and mechanical properties of Cu-diffused bulk MgB2 superconductor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the effect of various annealing time (0.5, 1, 1.5 and 2 h) on microstructural, mechanical and superconducting properties of the Cu-diffused bulk MgB2 superconducting samples is investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Vickers microhardness (H v ) and dc resistivity measurements for the first time. The critical transition temperature, grain size, phase purity, lattice parameter, surface morphology, crystallinity and room temperature resistivity values of the bulk samples prepared are compared with each other. Electrical-resistivity measurements show that the sample (annealed at 850 °C for 1 h), exhibiting the highest room temperature resistivity, obtains the maximum zero resistivity transition temperature (T c ). From the XRD results, all the samples contain MgB2 as the main phase with a very small amount of Mg2Cu phase. Moreover, SEM investigations conducted for the microstructural characterization illustrate that not only does the grain size of the samples studied enhance gradually, but the surface morphology and grain connectivity also improve with the increase in the diffusion-annealing time up to 1 h beyond which all the properties obtained start to degrade. Indeed, the worst surface morphology is observed for the Cu-diffused bulk MgB2 superconductor exposed to 2 h annealing duration. At the same time, Vickers microhardness, elastic modulus, load independent hardness, yield strength, fracture toughness and brittleness index values are calculated separately for the pure and Cu-diffused samples. It is found that the microhardness values depend strongly on the diffusion-annealing time. Furthermore, the diffusion coefficient of the Cu ion in the bulk MgB2 superconductor is obtained to change from 1.63 × 10−7 to 2.58 × 10−7 cm2 s−1. The maximum diffusion coefficient is observed for the sample prepared at 850 °C for 1 h whereas the minimum one is noted for the sample annealed at 850 °C for 2 h, confirming that the annealing-time of 1 h is the best ambient to improve the mechanical, microstructural and superconducting properties of the samples produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001)

    Article  CAS  Google Scholar 

  2. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14, R115 (2001)

    Article  CAS  Google Scholar 

  3. K. Vinod, R.G.A. Kumar, U. Syamaprasad, Supercond. Sci. Technol. 20, R1 (2007)

    Article  CAS  Google Scholar 

  4. S. Altin, M.A. Aksan, M.E. Yakinci, J. Phys. Chem. Solids. 72, 1070 (2011)

    Article  CAS  Google Scholar 

  5. N.K. Kim, K.S. Tan, B.H. Jun, H.W. Park, J. Joo, C.J. Kim, Phys. C. 468, 1375 (2008)

    Article  CAS  Google Scholar 

  6. A. Yamamoto, J.I. Shimoyama, S. Ueda, Y. Katsura, S. Horii, K. Kishio, Supercond. Sci. Technol. 17, 921 (2004)

    Article  CAS  Google Scholar 

  7. S. Zhou, S. Dou, Solid State Sci. 12, 105 (2010)

    Article  CAS  Google Scholar 

  8. Q. Cai, Y. Liu, Z. Ma, Z. Dong, J. Supercond. Nov. Magn. 25, 357 (2012)

    Article  CAS  Google Scholar 

  9. E.T. Koparan, A. Surdu, A. Sidorenko, E. Yanmaz, Phys. C. 473, 1 (2012)

    Article  Google Scholar 

  10. N.N. Kolesnikov, M.P. Kulakov, Phys. C. 363, 166 (2001)

    Article  CAS  Google Scholar 

  11. X.F. Pan, Y. Zhao, Y. Feng, Y. Yang, C.H. Cheng, Phys. C. 468, 1169 (2008)

    Article  CAS  Google Scholar 

  12. Z. Ma, Y. Liu, Mater. Chem. Phys. 126, 114 (2011)

    Article  CAS  Google Scholar 

  13. Y. Zhang, S.H. Zhou, X.L. Wang, S.X. Dou, Phys. C. 468, 1383 (2008)

    Article  CAS  Google Scholar 

  14. M. Dogruer, G. Yildirim, E. Yucel, C. Terzioglu, J. Mater. Sci. Mater. Electron. (2012). doi:10.1007/s10854-012-0689-6

    Google Scholar 

  15. M. Yilmazlar, O. Ozturk, O. Gorur, I. Belenli, C. Terzioglu, Supercond. Sci. Tech. 20, 365 (2007)

    Article  CAS  Google Scholar 

  16. B.D. Cullity, Elemt of X-ray diffraction, 3rd edn. (Addition-Wesley, Reading, 2001)

    Google Scholar 

  17. G. Yildirim, E. Yucel, S. Bal, M. Dogruer, A. Varilci, M. Akdogan, C. Terzioglu, Y. Zalaoglu, J. Supercond. Nov. Magn. 25, 231 (2012)

    Article  CAS  Google Scholar 

  18. A. Ianculescu, M. Gartner, B. Despax, V. Bley, Th. Gavrila, R. Leby, M. Modreanu, Appl. Surf. Sci. 253, 344 (1996)

    Article  Google Scholar 

  19. J. Napieralski, A. Kryza, J. Kasperczyk, I.V. Kityk, J. Phys. Chem. Solids. 62, 1949 (2001)

    Article  CAS  Google Scholar 

  20. J. Economy, R. Anderson, Inorg. Chem. 5, 989 (1966)

    Article  CAS  Google Scholar 

  21. C. Terzioglu, H. Aydin, O. Ozturk, E. Bekiroglu, I. Belenli, Phys. B. 403, 3354 (2008)

    Article  CAS  Google Scholar 

  22. G. Yildirim, S. Bal, E. Yucel, M. Dogruer, M. Akdogan, A. Varilci, C. Terzioglu, J. Supercond. Nov. Magn. 25, 381 (2012)

    Article  CAS  Google Scholar 

  23. C. Terzioglu, Phys. B. 403, 3320 (2008)

    Article  CAS  Google Scholar 

  24. C. Terzioglu, O. Ozturk, I. Belenli, J. Alloys Comp. 471, 142 (2009)

    Article  CAS  Google Scholar 

  25. O. Ozturk, H.A. Cetinkara, E. Asikuzun, M. Akdogan, M. Yilmazlar, C. Terzioglu, J. Mater. Sci. Mater. Electron. 22, 1501 (2011)

    Article  CAS  Google Scholar 

  26. E. Asikuzun, O. Ozturk, H.A. Cetinkara, G. Yildirim, A. Varilci, M. Yılmazlar, C. Terzioglu, J. Mater. Sci. Mater. Electron. (2011). doi:10.1007/s10854-011-0537-0

    Google Scholar 

  27. H.C. Ling, M.F. Yan, J. Appl. Phys. 64, 1307 (1988)

    Article  CAS  Google Scholar 

  28. U. Kolemen, O. Uzun, M.A. Aksan, N. Guc lu, E. Yakıncı, J. Alloys Comp. 415, 294 (2006)

    Article  Google Scholar 

  29. S.M. Khalil, J. Phys. Chem. Solids. 62, 457 (2001)

    Article  CAS  Google Scholar 

  30. Z. Li, A. Ghosh, A.S. Kobayashi, J. Am. Ceram. Soc. 72, 904 (1989)

    Article  CAS  Google Scholar 

  31. J.B. Quinn, G.D. Quinn, J. Mater. Sci. 31, 4331 (1997)

    Article  Google Scholar 

  32. N.H. Mohammed, A.I. Abou-Aly, I.H. Ibrahim, R. Awad, M. Rekaby, J. Supercond. Nov. Magn. 24, 1463 (2011)

    Article  CAS  Google Scholar 

  33. A. Leenders, M. Mich, H.C. Freyhard, Phys. C 279, 173 (1997)

    Article  CAS  Google Scholar 

  34. K. Hirao, M. Tomozawa, J. Am. Ceram. Soc. 70, 497 (1987)

    Article  CAS  Google Scholar 

  35. R. Tickoo, R.P. Tandon, K.K. Bamzai, P.N. Kotru, Mater. Chem. Phys. 80, 446 (2003)

    Article  CAS  Google Scholar 

  36. A.A. Elmustafa, D.S. Stone, J. Mech. Phys. Solids. 51, 357 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Terzioglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogruer, M., Gorur, O., Zalaoglu, Y. et al. Role of diffusion-annealing time on the superconducting, microstructural and mechanical properties of Cu-diffused bulk MgB2 superconductor. J Mater Sci: Mater Electron 24, 352–361 (2013). https://doi.org/10.1007/s10854-012-0755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-012-0755-0

Keywords

Navigation