Skip to main content
Log in

Composite polydopamine-based TiO2 coated mesh with restorable superhydrophobic surfaces for wastewater treatment

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Various pollutants in wastewater including water-insoluble oils and water-soluble toxic organic pollutants, have been threatening ecosystems and human health, making wastewater purification difficult. Inspired by the hierarchical structures and chemical compositions of lotus leaf, we combined the usage of polydopamine (PDA) chemistry and photocatalytically active TiO2 to develop a facile approach toward composite PDA-based TiO2 coated mesh with restorable superhydrophobicity. In this procedure, PDA assisted loading of TiO2 nanoparticles onto stainless steel mesh with a result of micro/nanoscale hierarchical surface was achieved via a single-step solvothermal method. After modified with 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane, this mesh became superhydrophobic. The TiO2 coated mesh exhibited enhanced superhydrophobicity, excellent environmental stability, robust chemical resistance and high mechanical durability. Moreover, it has been demonstrated the high separation capacity and extraordinary recyclability for various oils collection from water due to its special surface superhydrophobicity. Importantly, such a mesh possessed photocatalytic activity due to the embedded TiO2, which allowed for the effective degradation of organic pollutants under UV irradiation, representing a plausible way to restore superhydrophobic surface by photocatalytically decomposing the attached contaminants. This investigation suggests a green and facile way to prepare superhydrophobic materials with restored surface wetting property, which will be useful for wastewater purification.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    Article  CAS  Google Scholar 

  2. Gossen LP, Velichkina LM (2006) Environmental problems of the oil-and-gas industry. Pet Chem 46:67–72

    Article  Google Scholar 

  3. Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    Article  CAS  Google Scholar 

  4. Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D (2004) A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed 43:2012–2014

    Article  CAS  Google Scholar 

  5. Zhang W, Lu X, Xin Z, Zhou C (2015) A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation. Nanoscale 7:19476–19483

    Article  CAS  Google Scholar 

  6. Lin X, Chen Y, Liu N, Cao Y, Xu L, Zhang W, Feng L (2016) In situ ultrafast separation and purification of oil/water emulsions by superwetting TiO2 nanocluster-based mesh. Nanoscale 8:8525–8529

    Article  CAS  Google Scholar 

  7. Li B, Wu L, Li L, Seeger S, Zhang J, Wang A (2014) Superwetting double-layer polyester materials for effective removal of both insoluble oils and soluble dyes in water. ACS Appl Mater Interfaces 6:11581–11588

    Article  CAS  Google Scholar 

  8. Wang Y, Lin F, Shang B, Peng B, Deng Z (2018) Self-template synthesis of nickel silicate and nickel silicate/nickel composite nanotubes and their applications in wastewater treatment. J Colloid Interface Sci 522:191–199

    Article  CAS  Google Scholar 

  9. Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: Importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  Google Scholar 

  10. Wu C, Maurer C, Wang Y, Xue S, Davis DL (1999) Water pollution and human health in china. Environ Health Perspect 107:251–256

    Article  CAS  Google Scholar 

  11. Jackson JB, Cubit JD, Keller BD et al (1989) Ecological effects of a major oil spill on panamanian coastal marine communities. Science 243:37–44

    Article  CAS  Google Scholar 

  12. Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the exxon valdez oil spill. Science 302:2082–2086

    Article  CAS  Google Scholar 

  13. Zhang F, Zhang WB, Shi Z, Wang D, Jin J, Jiang L (2013) Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation. Adv Mater 25:4192–4198

    Article  CAS  Google Scholar 

  14. Bi H, Xie X, Yin K et al (2012) Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv Funct Mater 22:4421–4425

    Article  CAS  Google Scholar 

  15. Li A, Sun HX, Tan DZ et al (2011) Superhydrophobic conjugated microporous polymers for separation and adsorption. Energ Environ Sci 4:2062–2065

    Article  CAS  Google Scholar 

  16. Chu Y, Pan Q (2012) Three-dimensionally macroporous Fe/C nanocomposites as highly selective oil-absorption materials. ACS Appl Mater Interfaces 4:2420–2425

    Article  CAS  Google Scholar 

  17. Choi SJ, Kwon TH, Im H et al (2011) A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl Mater Interfaces 3:4552–4556

    Article  CAS  Google Scholar 

  18. Shang B, Wang Y, Peng B, Deng Z (2016) Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation. J Colloid Interface Sci 482:240–251

    Article  CAS  Google Scholar 

  19. Wang N, Wang Y, Shang B, Wen P, Peng B, Deng Z (2018) Bioinspired one-step construction of hierarchical superhydrophobic surfaces for oil/water separation. J Colloid Interface Sci 531:300–310

    Article  CAS  Google Scholar 

  20. Wang Y, Shang B, Hu X, Peng B, Deng Z (2017) Temperature control of mussel-inspired chemistry toward hierarchical superhydrophobic surfaces for oil/water separation. Adv Mater Interfaces 4:1600727

    Article  Google Scholar 

  21. Zhang W, Liu N, Cao Y, Lin X, Liu Y, Feng L (2017) Superwetting porous materials for wastewater treatment: From immiscible oil/water mixture to emulsion separation. Adv Mater Interfaces 4:1600029

    Article  Google Scholar 

  22. Ruan CP, Ai KL, Li XB, Lu LH (2014) A superhydrophobic sponge with excellent absorbency and flame retardancy. Angew Chem Int Ed 53:5556–5560

    Article  CAS  Google Scholar 

  23. Ge J, Shi LA, Wang YC et al (2017) Joule-heated graphene-wrapped sponge enables fast clean-up of viscous crude-oil spill. Nat Nanotechnol 12:434–440

    Article  CAS  Google Scholar 

  24. Wang N, Deng Z (2019) Synthesis of magnetic, durable and superhydrophobic carbon sponges for oil/water separation. Mater Res Bull 115:19–26

    Article  CAS  Google Scholar 

  25. Zhang L, Gu JC, Song LP, Chen L, Huang YJ, Zhang JW, Chen T (2016) Underwater superoleophobic carbon nanotubes/core-shell polystyrene@Au nanoparticles composite membrane for flow-through catalytic decomposition and oil/water separation. J Mater Chem A 4:10810–10815

    Article  CAS  Google Scholar 

  26. Li XY, Zhang WF, Liu N, Qu RX, Wei Y, Feng L (2018) Superwetting copper meshes based on self-organized robust CuO nanorods: Efficient water purification for in situ oil removal and visible light photodegradation. Nanoscale 10:4561–4569

    Article  Google Scholar 

  27. Huang KT, Yeh SB, Huang CJ (2015) Surface modification for superhydrophilicity and underwater superoleophobicity: Applications in antifog, underwater self-cleaning and oil-water separation. ACS Appl Mater Interfaces 7:21021–21029

    Article  CAS  Google Scholar 

  28. Huang JY, Li SH, Ge MZ et al (2015) Robust superhydrophobic TiO2@fabrics for uv shielding, self-cleaning and oil-water separation. J Mater Chem A 3:2825–2832

    Article  CAS  Google Scholar 

  29. Wen L, Tian Y, Jiang L (2015) Bioinspired super-wettability from fundamental research to practical applications. Angew Chem Int Ed 54:3387–3399

    Article  CAS  Google Scholar 

  30. Chu Z, Feng Y, Seeger S (2015) Oil/water separation with selective superantiwetting/superwetting surface materials. Angew Chem Int Ed 54:2328–2338

    Article  CAS  Google Scholar 

  31. Liu K, Cao M, Fujishima A, Jiang L (2014) Bio-inspired titanium dioxide materials with special wettability and their applications. Chem Rev 114:10044–10094

    Article  CAS  Google Scholar 

  32. Mao W, Lin X, Zhang W, Chi Z, Lyu R, Cao A, Wan L (2016) Core-shell structured TiO2@polydopamine for highly active visible-light photocatalysis. Chem Commun 52:7122–7125

    Article  CAS  Google Scholar 

  33. Wu C, Deng Z, Shang B, Ikkala O, Peng B (2018) A versatile colloidal janus platform: Surface asymmetry control, functionalization and applications. Chem Commun 54:12726–12729

    Article  CAS  Google Scholar 

  34. Deng Z, Shang B, Peng B (2018) Polydopamine based colloidal materials: Synthesis and applications. Chem Rec 18:410–432

    Article  CAS  Google Scholar 

  35. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  CAS  Google Scholar 

  36. Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L (2011) A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv Mater 23:4270–4273

    Article  CAS  Google Scholar 

  37. Cao YZ, Zhang XY, Tao L, Li K, Xue ZX, Feng L, Wei Y (2013) Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl Mater Interfaces 5:4438–4442

    Article  CAS  Google Scholar 

  38. Yang HC, Pi JK, Liao KJ, Huang H, Wu QY, Huang XJ, Xu ZK (2014) Silica-decorated polypropylene microfiltration membranes with a mussel-inspired intermediate layer for oil-in-water emulsion separation. ACS Appl Mater Interfaces 6:12566–12572

    Article  CAS  Google Scholar 

  39. Chen PC, Xu ZK (2013) Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation. Sci. Rep. 3:2776–2785

    Article  Google Scholar 

  40. Shang B, Xu M, Zhi Z et al (2020) Synthesis of sandwich-structured silver@ polydopamine@silver shells with enhanced antibacterial activities. J Colloid Interface Sci. 558:47–54

    Article  Google Scholar 

  41. Shang B, Wang Y, Peng B, Deng Z (2020) Bioinspired polydopamine coating as a versatile platform for synthesizing asymmetric janus particles at an air-water interface. Appl Surf Sci. 509:145360–145369

    Article  CAS  Google Scholar 

  42. Shang B, Zhang X, Ji R, Wang Y, Hu H, Peng B, Deng Z (2020) Preparation of colloidal polydopamine/Au hollow spheres for enhanced ultrasound contrast imaging and photothermal therapy. Mater Sci Eng C. 106:110174–110182

    Article  CAS  Google Scholar 

  43. Yang L, Chen C, Hu Y et al (2020) Three-dimensional bacterial cellulose/polydopamine/TiO2 nanocomposite membrane with enhanced adsorption and photocatalytic degradation for dyes under ultraviolet-visible irradiation. J Colloid Interface Sci. 562:21–28

    Article  CAS  Google Scholar 

  44. Liu F, Sun F, Pan Q (2014) Highly compressible and stretchable superhydrophobic coating inspired by bio-adhesion of marine mussels. J Mater Chem A. 2:11365–11371

    Article  CAS  Google Scholar 

  45. Martínez Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: A general review. Appl Catal B: Environ 87:105–145

    Article  Google Scholar 

  46. Miyauchi M, Nakajima A, Watanabe T, Hashimoto K (2002) Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films. Chem Mater 14:2812–2816

    Article  CAS  Google Scholar 

  47. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  48. Li Z, Guo Z (2019) Bioinspired surfaces with wettability for antifouling application. Nanoscale 11:22636–22663

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the National Natural Science Foundation of China (No.51473089), the Program for Science & Technology Innovation Team of Shaanxi Province (No.2018TD-030), the Innovation Capability Support Program of Shaanxi (No.2020TD-024), the Scientific Research Program Funded by Shaanxi Provincial Education Department (No.19JK0071) and the Fundamental Research Funds for the Central Universities (No.GK202002007, GK201901002) for financial supports. B.P. thanks the financial support from the Academy of Finland (No. 321443 and No. 328942).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Peng or Ziwei Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 4985 kb)

Supplementary file 2 (MP4 6884 kb)

Supplementary file 3 (MP4 8529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, N., Zhang, H., Liu, S. et al. Composite polydopamine-based TiO2 coated mesh with restorable superhydrophobic surfaces for wastewater treatment. J Mater Sci 56, 7321–7333 (2021). https://doi.org/10.1007/s10853-020-05729-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05729-6

Navigation