Skip to main content

Advertisement

Log in

Unexpected effect of stacking manner of covalent triazine polymer on photocatalytic hydrogen production

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Photocatalytic water splitting has been considered as a promising approach to generate H2 for addressing energy crisis and environmental issues. Herein, we fabricated two novel covalent triazine polymers (CTP), the compact CTP-TG-1 (TG is abbreviation of Tiangong University) and incompact CTP-TG-2, to explore the effect of stacking manner of 2D semiconductor on photocatalytic H2 production. The compact CTP-TG-1 shows excellent H2 production rate of 7066.15 µmol h−1 g−1. Meanwhile, the incompact counterpart, CTP-TG-2, which was constructed by tridimensional monomer, exhibits quite low H2 production rate of 171.65 µmol h−1 g−1. Although the two CTPs possess similar intrinsic features in visible-light absorbance, charge-carrier lifetime and energy level, the electrochemical measurements indicate that the compact CTP-TG-1 possesses faster charge-carrier transport, which is crucial for photocatalytic H2 generation. For the compact CTP-TG-1, the hot π-electrons in each 2D layer not only can migrate within the 2D plane, but also tunnel through 2D interlayer and then to Pt NPs on the surface for H2 generation. In contrast, owing to the large distance of loose 2D interlayer, the incompact CTP-TG-2 shows much lower photocatalytic activity as a result of the suppressed hot π-electrons tunneling. Furthermore, we designed and synthesized other three CTPs, including compact CTP-TG-4 and CTP-TG-5 and incompact CTP-TG-3. As expected, the compact CTP-TG-4 and CTP-TG-5 display one order of magnitude higher photocatalytic activity than that of the compact CTP-TG-3, further confirming the significant contribution of 2D stacking manner on photocatalytic hydrogen production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Elbanna O, Zhu M, Fujitsuka M, Majima T (2019) Black phosphorus sensitized TiO2 mesocrystal photocatalyst for hydrogen evolution with visible and near-infrared light irradiation. ACS Catal 9:3618–3626

    Article  CAS  Google Scholar 

  2. Guo Q, Liang F, Gao XY, Gan QC, Li XB, Li J, Lin ZS, Tung CH, Wu LZ (2018) Metallic Co2C: a promising co-catalyst to boost photocatalytic hydrogen evolution of colloidal quantum dots. ACS Catal 8:5890–5895

    Article  CAS  Google Scholar 

  3. Leng F, Liu H, Ding M, Lin QP, Jiang HL (2018) Boosting photocatalytic hydrogen production of porphyrinic MOFs: the metal location in metalloporphyrin matters. ACS Catal 8:4583–4590

    Article  CAS  Google Scholar 

  4. Zou YD, Yang BB, Liu Y, Ren Y, Ma JH, Zhou XR, Cheng XW, Deng YH (2018) Controllable interface-induced co-assembly toward highly ordered mesoporous Pt@TiO2/g-C3N4 heterojunctions with enhanced photocatalytic performance. Adv Funct Mater 28:1806214–1806224

    Article  CAS  Google Scholar 

  5. Li XG, Bi WT, Zhang L, Tao S, Chu WS, Zhang Q, Luo Y, Wu CZ, Xie Y (2016) Single-atom Pt as Co-catalyst for enhanced photocatalytic H2 evolution. Adv Mater 28:2427–2431

    Article  CAS  Google Scholar 

  6. Cao YJ, Chen S, Luo QQ, Yan H, Lin Y, Liu W, Cao LL, Lu JL, Yang JL, Yao T, Wei SQ (2017) Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4single-site photocatalyst. Angew Chem Int Ed 56:12191–12196

    Article  CAS  Google Scholar 

  7. Yang LQ, Huang JF, Shi L, Cao LY, Zhou W, Chang K, Meng XG, Liu GG, Jie YN, Ye JH (2017) Efficient hydrogen evolution over Sb doped SnO2 photocatalyst sensitized by Eosin Y under visible light irradiation. Nano Energy 36:331–340

    Article  CAS  Google Scholar 

  8. Zhang WY, Li YX, Peng SQ (2016) Facile synthesis of graphene sponge from graphene oxide for efficient dye-sensitized H2 evolution. ACS Appl Mater Inter 8:15187–15195

    Article  CAS  Google Scholar 

  9. Jiang DL, Li J, Xing CS, Zhang ZY, Meng SC, Chen M (2015) Two-dimensional CaIn2S4/g-C3N4 heterojunction nanocomposite with enhanced visible-light photocatalytic activities: interfacial engineering and mechanism insight. ACS Appl Mater Inter 7:19234–19242

    Article  CAS  Google Scholar 

  10. Dong YM, Kong LG, Wang GL, Jiang PP, Zhao N, Zhang HZ (2017) Photochemical synthesis of CoxP as cocatalyst for boosting photocatalytic H2 production via spatial charge separation. Appl Catal B Environ 211:245–251

    Article  CAS  Google Scholar 

  11. Yue XZ, Yi SS, Wang RW, Zhang ZT, Qiu SL (2016) A novel and highly efficient earth-abundant Cu3P with TiO2“P-N” heterojunction nanophotocatalyst for hydrogen evolution from water. Nanoscale 8:17516–17523

    Article  CAS  Google Scholar 

  12. Wang XN, Wang FL, Sang YH, Liu H (2017) Full-spectrum solar-light-activated photocatalysts for light-chemical energy conversion. Adv Energy Mater 7:1700473–1700487

    Article  CAS  Google Scholar 

  13. Li DD, Yu SH, Jiang HL (2018) From UV to near-infrared light-responsive metal-organic framework composites: plasmon and upconversion enhanced photocatalysis. Adv Mater 30:1707377–1707383

    Article  CAS  Google Scholar 

  14. Han Q, Wang B, Gao J, Cheng ZH, Zhao Y, Zhang ZP, Qu LT (2016) Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution. ACS Nano 10:2745–2751

    Article  CAS  Google Scholar 

  15. Zhu MS, Sun ZC, Fujitsuka M, Majima T (2018) Z-Scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light. Angew Chem Int Ed 57:2160–2164

    Article  CAS  Google Scholar 

  16. Jiang WJ, Wang H, Zhang XD, Zhu YF, Xie Y (2018) Two-dimensional polymeric carbon nitride: structural engineering for optimizing photocatalysis. Sci China Chem 61:1205–1213

    Article  CAS  Google Scholar 

  17. Jiang X, Wang P, Zhao JJ (2015) 2D covalent triazine framework: a new class of organic photocatalyst for water splitting. J Mater Chem A 3:7750–7758

    Article  CAS  Google Scholar 

  18. Cheng Z, Zheng KY, Lin GY, Fang SQ, Li LY, Bi JH, Shen JN, Wu L (2019) Constructing a novel family of halogen-doped covalent triazine-based frameworks as efficient metal-free photocatalysts for hydrogen production. Nanoscale Adv 1:2674–2680

    Article  CAS  Google Scholar 

  19. Wang N, Cheng G, Guo LP, Tan BE, Jin SB (2019) Hollow covalent triazine frameworks with variable shell thickness and morphology. Adv Funct Mater 29:1904781–1904788

    Article  CAS  Google Scholar 

  20. Lin B, Yang GD, Wang LZ (2019) Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution. Angew Chem Int Ed 58:1–6

    Article  Google Scholar 

  21. Li Y, Zhang DN, Feng XH, Xiang QJ (2020) Enhanced photocatalytic hydrogen production activity of highly crystalline carbon nitride synthesized by hydrochloric acid treatment. Chin J Catal 41:21–30

    Article  CAS  Google Scholar 

  22. Zou JY, Yu YZ, Yan WJ, Meng J, Zhang SC, Wang JG (2019) A facile route to synthesize boron-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. J Mater Sci 54:6867–6881

    Article  CAS  Google Scholar 

  23. Xiang QJ, Li F, Zhang DN, Liao YL, Zhou HP (2019) Plasma-based surface modification of g-C3N4 nanosheets for highly efficient photocatalytic hydrogen evolution. Appl Surf Sci 495:143520–143531

    Article  CAS  Google Scholar 

  24. Huang W, Wang ZJ, Ma BC, Ghasimi S, Gehrig D, Laquai F, Landfestera K, Zhang KAI (2016) Hollow nanoporous covalent triazine frameworks via acid vapor-assisted solid phase synthesis for enhanced visible light photoactivity. J Mater Chem A 4:7555–7559

    Article  CAS  Google Scholar 

  25. Stegbauer L, Zech S, Savasci G, Banerjee T, Podjaski F, Schwinghammer K, Ochsenfeld C, Lotsch BV (2018) Tailor-made photoconductive pyrene-based covalent organic frameworks for visible-light driven hydrogen generation. Adv Energy Mater 8:1703278–1703285

    Article  CAS  Google Scholar 

  26. Liu MY, Guo LP, Jin SB, Tan BE (2019) Covalent triazine frameworks: synthesis and applications. J Mater Chem A 7:5153–5172

    Article  CAS  Google Scholar 

  27. Su PP, Iwase K, Harada T, Kamiya K, Nakanishi S (2018) Covalent triazine framework modified with coordinatively-unsaturated Co or Ni atoms for CO2 electrochemical reduction. Chem Sci 9:3941–3947

    Article  CAS  Google Scholar 

  28. Kuecken S, Acharjya A, Zhi LJ, Schwarze M, Schomacker R, Thomas A (2017) Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chem Commun 53:5854

    Article  CAS  Google Scholar 

  29. Cao SW, Li H, Tong T, Chen HC, Yu A, Yu JG, Chen HM (2018) Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv Funct Mater 28:1802169–1802177

    Article  CAS  Google Scholar 

  30. Cheng Z, Fang W, Zhao T, Fang SQ, Bi JH, Liang SJ, Li LY, Yu Y, Wu L (2018) Efficient visible-light-driven photocatalytic hydrogen evolution on phosphorus-doped covalent triazine-based frameworks. ACS Appl Mater Inter 10:41415–41421

    Article  CAS  Google Scholar 

  31. Li X, Gao Q, Aneesh J, Xu HS, Chen ZX, Tang W, Liu CB, Shi XY, Adarsh KV, Lu YX, Loh KP (2018) Molecular engineering of bandgaps in covalent organic frameworks. Chem Mater 30:5743–5749

    Article  CAS  Google Scholar 

  32. Sick T, Hufnagel AG, Kampmann J, Kondofersky I, Calik M, Rotter JM, Evans AM, Döblinger M, Herbert S, Peters K, Boehm D, Knochel P, Medina DD, Rohlfing DF, Tan BE (2018) Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting. J Am Chem Soc 140:2085–2092

    Article  CAS  Google Scholar 

  33. Butchosa C, McDonald TO, Cooper AI, Adams DJ, Zwijnenburg MA (2014) Shining a light on s-triazine-based polymers. J Phys Chem C 118:4314–4324

    Article  CAS  Google Scholar 

  34. Li J, Liu P, Huang HL, Li Y, Tang YZ, Mei DH, Zhong CL (2020) Metal-free 2D/2D black phosphorus and covalent triazine framework heterostructure for CO2 photoreduction. ACS Sustain Chem Eng 8:5175–5183

    Article  CAS  Google Scholar 

  35. Bi JH, Fang W, Li LY, Wang JY, Liang SJ, He YH, Liu MH, Wu L (2015) Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water. Macromol Rapid Commun 36:1799–1805

    Article  CAS  Google Scholar 

  36. Li LY, Fang W, Zhang P, Bi JH, He YH, Wang JY, Su WY (2016) Sulfur-doped covalent triazine-based frameworks for enhanced photocatalytic hydrogen evolution from water under visible light. J Mater Chem A 4:12402–12406

    Article  CAS  Google Scholar 

  37. Tang YZ, Huang HL, Xue WJ, Chang YJ, Li Y, Guo XY, Zhong CL (2020) Rigidifying induced fluorescence enhancement in 2D porous covalent triazine framework nanosheets for the simultaneously luminous detection and adsorption removal of antibiotics. Chem Eng J 384:123382

    Article  CAS  Google Scholar 

  38. Auras F, Ascherl L, Hakimioun AH, Margraf JT, Hanusch FC, Reuter S, Bessinger D, Döblinger M, Hettstedt C, Karaghiosoff K, Herbert S, Knochel P, Clark T, Bein T (2016) Synchronized offset stacking: a concept for growing large-domain and highly crystalline 2d covalent organic frameworks. J Am Chem Soc 138:16703–16710

    Article  CAS  Google Scholar 

  39. Jiao TY, Chen L, Yang D, Li X, Wu GC, Zeng PM, Zhou AK, Yin Q, Pan YJ, Wu B, Hong X, Kong XQ, Lynch VM, Sessler JL, Li H (2017) Trapping white phosphorus within a purely organic molecular container produced by imine condensation. Angew Chem Int Ed 56:14545–14550

    Article  CAS  Google Scholar 

  40. Bunck DN, Dichtel WR (2013) Bulk synthesis of exfoliated 2D polymers using. hydrazone-linked covalent organic frameworks. J Am Chem Soc 135:14952–14955

    Article  CAS  Google Scholar 

  41. Liang RW, Jing FF, Shen LJ, Qin N, Wu L (2015) M@MIL-100(Fe) (M = Au, Pd, Pt) nanocomposites fabricated by a facile photodeposition process: efficient visible-light photocatalysts for redox reactions in water. Nano Res 8:3237–3249

    Article  CAS  Google Scholar 

  42. Li J, Huang HL, Liu P, Song XH, Mei DH, Tang YZ, Wang X, Zhong CL (2019) Metal-organic framework encapsulated single-atom Pt catalysts for efficient photocatalytic hydrogen evolution. J Catal 375:351–360

    Article  CAS  Google Scholar 

  43. Bhunia A, Esquivel D, Dey S, Teran RF, Goto Y, Inagaki S, Voorta PVD, Janiak C (2016) A photoluminescent covalent triazine framework: CO2 adsorption, light-driven hydrogen evolution and sensing of nitroaromatics. J Mater Chem A 4:13450–13457

    Article  CAS  Google Scholar 

  44. Guo LP, Niu YL, Razzaque S, Tan BE, Jin SB (2019) Design of D-A1-A2 covalent triazine frameworks via copolymerization for photocatalytic hydrogen evolution. ACS Catal 9:9438–9445

    Article  CAS  Google Scholar 

  45. Wang KW, Yang LM, Wang X, Guo LP, Cheng G, Zhang C, Jin SB, Tan BE, Cooper A (2017) Covalent triazine frameworks via a low temperature polycondensation approach. Angew Chem Int Ed 56:14149–14153

    Article  CAS  Google Scholar 

  46. Xie JJ, Shevlin SA, Ruan QS, Moniz SJA, Liu YR, Liu X, Li YM, Lau CC, Guo ZX, Tang JW (2018) Efficient visible light-driven water oxidation and proton reduction by an ordered covalent triazine-based framework. Energy Environ Sci 11:1617

    Article  Google Scholar 

  47. Huang W, He Q, Hu YP, Li YG (2019) Molecular heterostructures of covalent triazine frameworks for enhanced photocatalytic hydrogen production. Angew Chem Int Ed 58:8676–8680

    Article  CAS  Google Scholar 

  48. Liu D, Zhang S, Wang JM, Peng TY, Li RJ (2019) Direct Z-scheme 2D/2D photocatalyst based on ultrathin g-C3N4 and WO3nanosheets for efficient visible-light-driven H2 generation. ACS Appl Mater Inter 11:27913–27923

    Article  CAS  Google Scholar 

  49. Li J, Liu P, Tang YZ, Huang HL, Cui HZ, Mei DH, Zhong CL (2020) Single-atom Pt−N3 sites on the stable covalent triazine framework nanosheets for photocatalytic N2 fixation. ACS Catal 10:2431–2442

    Article  CAS  Google Scholar 

  50. Li XY, Liu H, Liu S, Zhang J, Chen W, Huang CP, Mao LQ (2016) Effect of Pt-Pd hybrid nano-particle on CdS’s activity for water splitting under visible light. Int J Hydrogen Energ 41:23015–23021

    Article  CAS  Google Scholar 

  51. Han QT, Bai XW, Man ZQ, He HC, Li L, Hu JQ, Alsaedi A, Hayat T, Yu ZT, Zhang WH, Wang JL, Zhou Y, Zou ZG (2019) Convincing synthesis of atomically thin, single-crystalline InVO4 sheets toward promoting highly selective and efficient solar conversion of CO2 into CO. J Am Chem Soc 141:4209–4213

    Article  CAS  Google Scholar 

  52. Wang SY, Hai X, Ding X, Jin SB, Xiang YG, Wang P, Jiang B, Ichihara F, Oshikiri M, Meng XG, Li YX, Matsuda W, Ma J, Seki S, Wang XP, Huang H, Wada Y, Chen H, Ye JH (2020) Intermolecular cascaded π-conjugation channels for electron delivery powering CO2 photoreduction. Nat Commun 11:1149–1157

    Article  CAS  Google Scholar 

  53. Ming JT, Liu A, Zhao JW, Zhang P, Huang HW, Lin H, Xu ZT, Zhang XM, Wang XX, Hofkens J, Roeffaers MBJ, Long JL (2019) Hot π-electron tunneling of metal–insulator–COF nanostructures for efficient hydrogen production. Angew Chem Int Ed 58:1–6

    Article  CAS  Google Scholar 

  54. Pachfule P, Acharjya A, Roeser J, Langenhahn T, Schwarze M, SchomackerThomas RAJ (2018) Schmidt, diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J Am Chem Soc 140:1423–1427

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 22038010, 21536001, 21878229, and 21978212), National Key Projects for Fundamental Research and Development of China (No. 2016YFB0600901) and the Science and Technology Plans of Tianjin (No. 19PTSYJC00020 and 20ZYJDJC00110).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongliang Huang or Chongli Zhong.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Maude Jimenez.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3036 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tang, Y., Li, J. et al. Unexpected effect of stacking manner of covalent triazine polymer on photocatalytic hydrogen production. J Mater Sci 56, 5772–5785 (2021). https://doi.org/10.1007/s10853-020-05637-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05637-9

Navigation