Skip to main content
Log in

Plasmonic gold nanostars@ZIF-8 nanocomposite for the ultrasensitive detection of gaseous formaldehyde

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Formaldehyde is a strong-smelling, colorless, excitant gas that is carcinogenic to humans. It is frequently used in the interior of decorative materials such as wood paneling and carpets. Several epidemiological studies have shown that the increasing incidence of nasal and lung cancer is due to exposure to environmental formaldehyde. Thus, the rapid detection of formaldehyde with high sensitivity is vitally important for environmental monitoring and clinical diagnosis. Surface-enhanced Raman scattering (SERS) is an analytical technique that can provide fingerprint information on target materials with a sensitivity even down to the single-molecule level. However, formaldehyde molecules have a low cross section for Raman scattering and extremely weak analyte–metal interactions, and are thus scarcely detectable with conventional SERS technology. In this paper, a porous zeolitic imidazolate framework-8 (ZIF-8) shell layer was grown in situ on gold nanostars (AuNSs) for capturing and altering the route taken by formaldehyde molecules. Compared with current SERS detection methods, these as-synthesized core–shell AuNS@ZIF-8 nanocomposites with special apertures can cause formaldehyde molecules to pass through the ZIF-8 channels to the metal surface. With the help of ZIF-8 shell layers, the SERS-active AuNS@ZIF-8 substrates display extremely high sensitivity to formaldehyde molecules, with the lowest detection level almost at parts per billion (ppb). This study may therefore provide the basis for a reliable SERS strategy for detecting small molecules, especially gas samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826. https://doi.org/10.1103/RevModPhys.57.783

    Article  CAS  Google Scholar 

  2. Xie W, Schlücker S (2014) Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review. Rep Prog Phys 77:116502–116524. https://doi.org/10.1088/0034-4885/77/11/116502

    Article  CAS  Google Scholar 

  3. Li JF, Huang YF, Ding Y et al (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392–395. https://doi.org/10.1038/nature08907

    Article  CAS  Google Scholar 

  4. Alessandri I, Lombardi J (2016) Enhanced Raman scattering with dielectrics. Chem Rev 116:14921–14981. https://doi.org/10.1021/acs.chemrev.6b00365

    Article  CAS  Google Scholar 

  5. Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Rev Phys Chem 58:267–297. https://doi.org/10.1146/annurev.physchem.58.032806.104607

    Article  CAS  Google Scholar 

  6. Trefry JC, Monahan JL, Weaver KM et al (2010) Size selection and concentration of silver nanoparticles by tangential flow ultrafiltration for SERS-based biosensors. J Am Chem Soc 132:10970–10972. https://doi.org/10.1021/ja103809c

    Article  CAS  Google Scholar 

  7. Meng J, Qin S, Zhang L, Yang L (2016) Designing of a novel gold nanodumbbells SERS substrate for detection of prohibited colorants in drinks. Appl Surf Sci 366:181–186. https://doi.org/10.1016/j.apsusc.2016.01.078

    Article  CAS  Google Scholar 

  8. Alvarez-puebla RA, dos Santos DS Jr, Aroca RF (2008) SERS detection of environmental pollutants in humic acid-gold nanoparticle composite materials. Analyst 132:1210–1214. https://doi.org/10.1039/b711361g

    Article  CAS  Google Scholar 

  9. Li JF, Ding SY, Yang ZL et al (2011) Extraordinary enhancement of Raman scattering from pyridine on single crystal Au and Pt electrodes by shell-isolated Au nanoparticles. J Am Chem Soc 133:15922–15925. https://doi.org/10.1021/ja2074533

    Article  CAS  Google Scholar 

  10. Li CY, Dong JC, Jin X et al (2015) In situ monitoring of electrooxidation processes at gold single crystal surfaces using shell-isolated nanoparticle-enhanced Raman spectroscopy. J Am Chem Soc 137:7648–7651. https://doi.org/10.1021/jacs.5b04670

    Article  CAS  Google Scholar 

  11. Yang JL, Xu J, He R et al (2017) In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional Au@CdS core-shell nanocomposites. Nanoscale 9:6254–6258. https://doi.org/10.1039/c7nr00655a

    Article  CAS  Google Scholar 

  12. Mubeen S, Lee J, Singh N et al (2013) An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat Nanotechnol 8:247–251. https://doi.org/10.1038/nnano.2013.18

    Article  CAS  Google Scholar 

  13. Nie S, Emory SR (1997) Probing single molecules and single nanoparticles by surface enhanced Raman scattering. Science 275:1102–1106. https://doi.org/10.1126/science.275.5303.1102

    Article  CAS  Google Scholar 

  14. Kneipp K, Wang Y, Kneipp H et al (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667–1670. https://doi.org/10.1103/PhysRevLett.78.1667

    Article  CAS  Google Scholar 

  15. Pamela MB (2017) Review of SERS substrates for chemical sensing. Nanomaterials 7:1–30. https://doi.org/10.3390/nano7060142

    Article  CAS  Google Scholar 

  16. Blackie EJ, Le Ru EC, Etchegoin PG (2009) Single-molecule surface-enhanced Raman spectroscopy of nonresonant molecules. J Am Chem Soc 131:14466–14472. https://doi.org/10.1021/ja905319w

    Article  CAS  Google Scholar 

  17. Jeanmaire DL, Duyne RPV (1997) Surface Raman spectroelectrochemistry: part I. heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J Electroanal Chem 84:1–20. https://doi.org/10.1016/S0022-0728(77)80224-6

    Article  Google Scholar 

  18. Kleinman SL, Ringe E, Valley N et al (2011) Single-molecule surface-enhanced Raman spectroscopy of crystal violet isotopologues: theory and experiment. J Am Chem Soc 133:4115–4122. https://doi.org/10.1021/ja110964d

    Article  CAS  Google Scholar 

  19. Kodiyath R, Malak ST, Combs ZA et al (2013) Assemblies of silver nanocubes for highly sensitive SERS chemical vapor detection. J Mater Chem A 1:2777–2788. https://doi.org/10.1039/C2TA00867J

    Article  CAS  Google Scholar 

  20. Li RP, Yang GH, Yang JL et al (2016) Determination of melamine in milk using surface plasma effect of aggregated Au@SiO2 nanoparticles by SERS technique. Food Control 68:14–19. https://doi.org/10.1016/j.foodcont.2016.03.009

    Article  CAS  Google Scholar 

  21. Fang X, Ahmad SR (2009) Detection of explosive vapour using surface-enhanced Raman spectroscopy. Appl Phys B: Lasers Opt 97:723–726. https://doi.org/10.1007/s00340-009-3644-3

    Article  CAS  Google Scholar 

  22. Yu JM, Balbuena PB (2013) Water effects on postcombustion CO2 capture in Mg-MOF-74. J Phys Chem C 117:3383–3388. https://doi.org/10.1021/jp311118x

    Article  CAS  Google Scholar 

  23. Sun L, Yu ZL, Lin MS (2019) Synthesis of polyhedral gold nanostars as surface-enhanced Raman spectroscopy substrates for measurement of thiram in peach juice. Analyst 144:4820–4825. https://doi.org/10.1039/C9AN00687G

    Article  CAS  Google Scholar 

  24. Du JJ, Jing CY (2011) Preparation of thiol modified Fe3O4@Ag magnetic SERS probe for PAHs detection and identification. J Phys Chem C 115:17829–17835. https://doi.org/10.1021/jp203181c

    Article  CAS  Google Scholar 

  25. Noguchi T, Fujishima A, Hashimoto K, Sawunyama P (1998) Photocatalytic degradation of gaseous formaldehyde using TiO2 film. Environ Sci Technol 32:3831–3933. https://doi.org/10.1021/es980299+

    Article  CAS  Google Scholar 

  26. Barash O, Peled N, Hirsch FR, Haick H (2009) Sniffing the unique “odor print” of non-small-cell lung cancer with gold nanoparticles. Small 5:2618–2624. https://doi.org/10.1002/smll.200900937

    Article  CAS  Google Scholar 

  27. Fuchs P, Loeseken C, Schubert JK, Miekisch W (2010) Breath gas aldehydes as biomarkers of lung cancer. Int J Cancer 126:2663–2670. https://doi.org/10.1002/ijc.24970

    Article  CAS  Google Scholar 

  28. Rascon C, Parry AO (2000) Geometry-dominated fluid adsorption on sculpted solid substrates. Nature 407:986–989. https://doi.org/10.1038/35039590

    Article  CAS  Google Scholar 

  29. Hao NJ, Yan B (2016) A dual-emitting 4d–4f nanocrystalline metal-organic framework as a self-calibrating luminescent sensor for indoor formaldehyde pollution. Nanoscale 8:12047–12053. https://doi.org/10.1039/c6nr02446g

    Article  CAS  Google Scholar 

  30. Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674. https://doi.org/10.1021/cr300014x

    Article  CAS  Google Scholar 

  31. Ranocchiari M, Bokhoven JAV (2011) Catalysis by metal-organic frameworks: fundamentals and opportunities. Phys Chem Chem Phys 13:6388–6396. https://doi.org/10.1039/c0cp02394a

    Article  CAS  Google Scholar 

  32. Chen BL, Xiang SC, Qian GD (2010) Metal-organic frameworks with functional pores for recognition of small molecules. Acc Chem Res 43:1115–1124. https://doi.org/10.1021/ar100023y

    Article  CAS  Google Scholar 

  33. Carrillo-Carrión C, Martínez R, Navarro Poupard MF et al (2019) Aqueous stable gold nanostar/ZIF-8 nanocomposites for light-triggered release of active cargo inside living cells. Angew Chem Int Ed Engl 58:7078–7082. https://doi.org/10.1002/ange.201902817

    Article  Google Scholar 

  34. Lin ZJ, Lu J, Hong M, Cao R (2014) Metal-organic frameworks based on flexible ligands (FL-MOFs): structures and applications. Chem Soc Rev 43:5867–5895. https://doi.org/10.1039/c3cs60483g

    Article  CAS  Google Scholar 

  35. He L, Liu Y, Liu J et al (2013) Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew Chem Int Ed 125:3741–3745. https://doi.org/10.1002/ange.201209903

    Article  Google Scholar 

  36. Men D, Feng SJ, Liu GQ, Hang LF, Zhang T (2020) A sensitive “optical nose” for detection of volatile organic molecules based on Au@MOFs nanoparticle arrays through surface-enhanced Raman scattering. Part Part Syst Charact 37:1900452–1900459. https://doi.org/10.1002/ppsc.201900452

    Article  CAS  Google Scholar 

  37. Yang K, Zong SF, Zhang YZ et al (2020) Array-assisted SERS microfluidic chips for highly sensitive and multiplex gas sensing. ACS Appl Mater Interfaces 12:1395–1403. https://doi.org/10.1021/acsami.9b19358

    Article  CAS  Google Scholar 

  38. Sui N, Gao HX, Zhu JC, Jiang HR (2019) Shape- and size-dependences of gold nanostructures on electrooxidation of methanol under visible light irradiation. Nanoscale 11:18320–18328. https://doi.org/10.1039/C9NR06839B

    Article  CAS  Google Scholar 

  39. Zheng GC, Marchi SD, López-Puente V et al (2016) Encapsulation of single plasmonic nanoparticles within ZIF-8 and SERS analysis of the MOF flexibility. Small 12:3881–3890. https://doi.org/10.1002/smll.201670141

    Article  CAS  Google Scholar 

  40. Zhou L, Su P, Deng YL, Yang Y (2017) Self-assembled magnetic nanoparticle supported zeolitic imidazolate framework-8: an efficient adsorbent for the enrichment of triazine herbicides from fruit, vegetables, and water. J Sep Sci 40:909–918. https://doi.org/10.1002/jssc.201601089

    Article  CAS  Google Scholar 

  41. Handa S, Gnanadesikan V, Matsunaga S, Shibasaki M (2010) Heterobimetallic transition metal/rare earth metal bifunctional catalysis: a Cu/Sm/Schiff base complex for syn-selective catalytic asymmetric nitro-mannich reaction. J Am Chem Soc 132:4925–4934. https://doi.org/10.1021/ja100514y

    Article  CAS  Google Scholar 

  42. Yang JL, Wang HJ, Zhang H, Tian ZQ, Li JF (2020) Probing hot electron behaviors by surface-enhanced Raman spectroscopy. Cell Rep Phys Sci 1:100184. https://doi.org/10.1016/j.xcrp.2020.100184

    Article  Google Scholar 

  43. Nandi S, Sharma E, Trivedi V, Biswas S (2018) Metal-organic framework showing selective and sensitive detection of exogenous and endogenous formaldehyde. Inorg Chem 57:15149–15157. https://doi.org/10.1021/acs.inorgchem.8b02411

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61805069 and U1904193), the Science and Technology Development Project of Henan Province (182102210029).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruoping Li or Mingju Huang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOC 20818 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Xin, M., Chong, J. et al. Plasmonic gold nanostars@ZIF-8 nanocomposite for the ultrasensitive detection of gaseous formaldehyde. J Mater Sci 56, 4151–4160 (2021). https://doi.org/10.1007/s10853-020-05507-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05507-4

Navigation