Skip to main content
Log in

Influence of a nanostructured ZnO layer on the carrier recombination and dynamics in chalcopyrite solar cells

  • Advanced Nano Materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of the incorporation of a nanostructured ZnO layer on the carrier recombination and dynamics of chalcopyrite solar cells was studied. Intensity-modulated photocurrent and photovoltage spectroscopy (IMPS and IMVS, respectively) were used for the charge carrier dynamics characterization of two ZnO/In2S3/CuInS2-based solar cells. The charge carrier dynamics on a cell with a ZnO nanorod (ZnO-NR) layer was compared with a similar sample without the nanostructured layer. The IMPS and IMVS responses were measured at different continuous light intensities, and a multitrapping behavior was observed. Higher recombination and transport times were obtained for the cell including the NR layer. Moreover, an enhancement in the charge carrier collection efficiency was observed for the cell with the NR additional layer. The increased surface-to-volume ratio of the NR layer and the passivation of defects in the ZnO/In2S3 interface could be associated with the observed charge dynamics enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kaneshiro J, Gaillard N, Rocheleau R, Miller E (2010) Advances in copper-chalcopyrite thin films for solar energy conversion. Sol Energy Mater Sol Cells 94:12–16. https://doi.org/10.1016/j.solmat.2009.03.032

    Article  CAS  Google Scholar 

  2. Azimi H, Hou Y, Brabec CJ (2014) Towards low-cost, environmentally friendly printed chalcopyrite and kesterite solar cells. Energy Environ Sci 7:1829–1849. https://doi.org/10.1039/C3EE43865A

    Article  CAS  Google Scholar 

  3. Di Iorio Y, Berruet M, Gau DL et al (2017) Efficiency improvements in solution-based CuInS2 solar cells incorporating a Cl-doped ZnO nanopillars array. Phys Status Solidi Appl Mater Sci 214:1–8. https://doi.org/10.1002/pssa.201700191

    Article  CAS  Google Scholar 

  4. Ogawa Y, Uenishi S, Tohyama K, Ito K (1994) Preparation and properties of CuInS2 thin films. Sol Energy Mater Sol Cells 35:157–163

    Article  CAS  Google Scholar 

  5. Grindle SP, Smith CW, Mittleman SD (1979) Preparation and properties of CuInS2 thin films produced by exposing sputtered Cu–In films to an H2S atmosphere. Appl Phys Lett 35:24–26. https://doi.org/10.1063/1.90918

    Article  CAS  Google Scholar 

  6. Herrero J, Ortega J (1990) Electrodeposition of CuIn alloys for preparing CuInS2 thin films. Sol Energy Mater 20:53–65. https://doi.org/10.1016/0165-1633(90)90017-U

    Article  CAS  Google Scholar 

  7. Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of pn junction solar cells. J Appl Phys 32:510–519. https://doi.org/10.1063/1.1736034

    Article  CAS  Google Scholar 

  8. Tsakalakos L (2008) Nanostructures for photovoltaics. Mater Sci Eng R Reports 62:175–189. https://doi.org/10.1016/j.mser.2008.06.002

    Article  CAS  Google Scholar 

  9. Spurgeon JM, Atwater HA, Lewis NS (2008) A comparison between the behavior of nanorod array and planar Cd(Se, Te) photoelectrodes. J Phys Chem C 112:6186–6193. https://doi.org/10.1021/jp077481u

    Article  CAS  Google Scholar 

  10. Tena-Zaera R, Ryan MA, Katty A et al (2006) Fabrication and characterization of ZnO nanowires/CdSe/CuSCN eta-solar cell. Comptes Rendus Chim 9:717–729. https://doi.org/10.1016/J.CRCI.2005.03.034

    Article  CAS  Google Scholar 

  11. Guerguerian G, Elhordoy F, Pereyra CJ et al (2012) ZnO/Cu2O heterostructure nanopillar arrays: synthesis, structural and optical properties. J Phys D Appl Phys 45:1–10. https://doi.org/10.1088/0022-3727/45/24/245301

    Article  CAS  Google Scholar 

  12. Campo L, Pereyra CJ, Amy L et al (2013) Electrochemically grown ZnO nanorod arrays decorated with CdS quantum dots by using a spin-coating assisted successive-ionic-layer-adsorption and reaction method for solar cell applications. ECS J Solid State Sci Technol 2:Q151–Q158. https://doi.org/10.1149/2.016309jss

    Article  CAS  Google Scholar 

  13. Guerguerian G, Elhordoy F, Pereyra CJ et al (2011) ZnO nanorod/CdS nanocrystal core/shell-type heterostructures for solar cell applications. Nanotechnology 22:1–9. https://doi.org/10.1088/0957-4484/22/50/505401

    Article  CAS  Google Scholar 

  14. Vega-Poot AG, Macías-Montero M, Idígoras J et al (2014) Mechanisms of electron transport and recombination in ZnO nanostructures for dye-sensitized solar cells. Chem Phys Chem 15:1088–1097. https://doi.org/10.1002/cphc.201301068

    Article  CAS  Google Scholar 

  15. Martinson ABF, Mc Garrah JE, Parpia MOK, Hupp JT (2006) Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells. Phys Chem Chem Phys 8:4655–4659. https://doi.org/10.1039/b610566a

    Article  CAS  Google Scholar 

  16. Tena-Zaera R, Elias J, Lévy-Clément C (2008) ZnO nanowire arrays: optical scattering and sensitization to solar light. Appl Phys Lett 93:1–3. https://doi.org/10.1063/1.3040054

    Article  CAS  Google Scholar 

  17. Nowak R-E, Vehse M, Sergeev O et al (2014) ZnO nanorod arrays as light trapping structures in amorphous silicon thin-film solar cells. Sol Energy Mater Sol Cells 125:305–309. https://doi.org/10.1016/j.solmat.2013.12.025

    Article  CAS  Google Scholar 

  18. Khan S, Hussain SQ, Hwang D et al (2015) Light trapping by hydrothermally deposited zinc oxide nanostructures with high haze ratio. Mater Sci Semicond Process 37:51–56. https://doi.org/10.1016/j.mssp.2015.01.019

    Article  CAS  Google Scholar 

  19. Strano V, Smecca E, Depauw V et al (2015) Low-cost high-haze films based on ZnO nanorods for light scattering in thin c-Si solar cells. Appl Phys Lett 106:1–5. https://doi.org/10.1063/1.4905389

    Article  CAS  Google Scholar 

  20. Ponomarev EA, Peter LM (1995) A generalized theory of intensity modulated photocurrent spectroscopy (IMPS). J Electroanal Chem 396:219–226. https://doi.org/10.1016/0022-0728(95)04115-5

    Article  Google Scholar 

  21. Schlichthörl G, Huang SY, Sprague J, Frank AJ (1997) Band edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: a study by intensity modulated photovoltage spectroscopy. J Phys Chem B 101:8141–8155. https://doi.org/10.1021/jp9714126

    Article  Google Scholar 

  22. Halme J (2011) Linking optical and electrical small amplitude perturbation techniques for dynamic performance characterization of dye solar cells. Phys Chem Chem Phys 13:12435. https://doi.org/10.1039/c1cp21134j

    Article  CAS  Google Scholar 

  23. van der Zanden B, Goossens A (2000) The nature of electron migration in dye-sensitized nanostructured TiO2. J Phys Chem B 104:7171–7178. https://doi.org/10.1021/jp001016e

    Article  CAS  Google Scholar 

  24. Wang F, Chen Y, Han G et al (2016) The interface and its role in carrier transfer/recombination dynamics for the planar perovskite solar cells prepared under fully open air conditions. Curr Appl Phys 16:1353–1363. https://doi.org/10.1016/j.cap.2016.08.002

    Article  Google Scholar 

  25. Grasso C, Nanu M, Goossens A, Burgelman M (2005) Electron transport in CuInS2-based nanostructured solar cells. Thin Solid Films 480–481:87–91. https://doi.org/10.1016/j.tsf.2004.11.019

    Article  CAS  Google Scholar 

  26. Pereyra CJ, Di Iorio Y, Berruet M et al (2019) Carrier recombination and transport dynamics in superstrate solar cells analyzed by modeling the intensity modulated photoresponses. Phys Chem Chem Phys 21:20360−20371. https://doi.org/10.1039/C9CP04256C

    Article  CAS  Google Scholar 

  27. Berruet M, Di Iorio Y, Pereyra CJ et al (2017) Highly-efficient superstrate Cu2ZnSnS4 solar cell fabricated low-cost methods. Phys Status Solidi Rapid Res Lett 11:1700144. https://doi.org/10.1002/pssr.201700144

    Article  CAS  Google Scholar 

  28. Schlichthörl G, Park NG, Frank AJ (1999) Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 103:782–791. https://doi.org/10.1021/jp9831177

    Article  Google Scholar 

  29. Dloczik L, Ileperuma O, Lauermann I et al (1997) Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. J Phys Chem B 101:10281–10289. https://doi.org/10.1021/jp972466i

    Article  CAS  Google Scholar 

  30. Peter LM, Wijayantha KGU (2000) Electron transport and back reaction in dye sensitized nanocrystalline photovoltaic cells. Electrochim Acta 45:4543–4551. https://doi.org/10.1016/S0013-4686(00)00605-8

    Article  CAS  Google Scholar 

  31. Grasso C, Burgelman M (2004) Theoretical study on the effect of an intermediate layer in CIS-based ETA-solar cells. Thin Solid Films 451:156–159. https://doi.org/10.1016/j.tsf.2003.11.008

    Article  CAS  Google Scholar 

  32. Franco G (1999) Detection of inhomogeneous dye distribution in dye sensitised nanocrystalline solar cells by intensity modulated photocurrent spectroscopy (IMPS). Electrochem commun 1:61–64. https://doi.org/10.1016/S1388-2481(99)00005-3

    Article  CAS  Google Scholar 

  33. Krüger J, Plass R, Grätzel M et al (2003) Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. J Phys Chem B 107:7536–7539. https://doi.org/10.1021/jp0348777

    Article  CAS  Google Scholar 

  34. Peter LM (1999) Intensity dependence of the electron diffusion length in dye-sensitised nanocrystalline TiO2 photovoltaic cells. Electrochem commun 1:576–580. https://doi.org/10.1016/S1388-2481(99)00120-4

    Article  CAS  Google Scholar 

  35. Waita SM, Aduda BO, Mwabora JM et al (2007) Electron transport and recombination in dye sensitized solar cells fabricated from obliquely sputter deposited and thermally annealed TiO2 films. J Electroanal Chem 605:151–156. https://doi.org/10.1016/j.jelechem.2007.04.001

    Article  CAS  Google Scholar 

  36. Fisher AC, Peter LM, Ponomarev EA et al (2000) Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanocrystalline TiO2 solar cells. J Phys Chem B 104:949–958. https://doi.org/10.1021/jp993220b

    Article  CAS  Google Scholar 

  37. Hu W, Liu T, Guo Y et al (2015) Highly efficient solid-state solar cells based on composite CdS–ZnS quantum dots. J Electrochem Soc 162:H747–H752. https://doi.org/10.1149/2.0041510jes

    Article  CAS  Google Scholar 

  38. O’Hayre R, Nanu M, Schoonman J, Goossens A (2007) A parametric study of TiO2/CuInS2 nanocomposite solar cells: how cell thickness, buffer layer thickness, and TiO2 particle size affect performance. Nanotechnology 18:055702. https://doi.org/10.1088/0957-4484/18/5/055702

    Article  CAS  Google Scholar 

  39. Guillén E, Peter LM, Anta JA (2011) Electron transport and recombination in ZnO-based dye-sensitized solar cells. J Phys Chem C 115:22622–22632. https://doi.org/10.1021/jp206698t

    Article  CAS  Google Scholar 

  40. Guillén E, Ramos FJ, Anta JA, Ahmad S (2014) Elucidating transport-recombination mechanisms in perovskite solar cells by small-perturbation techniques. J Phys Chem C 118:22913–22922. https://doi.org/10.1021/jp5069076

    Article  CAS  Google Scholar 

  41. van de Lagemaat J, Frank AJ (2001) Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies. J Phys Chem B 105:11194–11205. https://doi.org/10.1021/jp0118468

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Uruguayan authors are grateful to PEDECIBA—Física Uruguay, ANII (Agencia Nacional de Investigación e Innovación) Projects FSE_1_2014_1_102184 and FCE_1_2014_1_104739, CSIC (Comisión Sectorial de Investigación Científica) and CAP (Comisión Académica de Posgrado) of the Universidad de la República. The Argentinean authors acknowledge the financial support from CONICET-ANII (MOV_CO_2013_1_100005), ANPCyT (PICT 972/15), and Universidad Nacional de Mar del Plata (ING477/16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Javier Pereyra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 873 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereyra, C.J., Di Iorio, Y., Berruet, M. et al. Influence of a nanostructured ZnO layer on the carrier recombination and dynamics in chalcopyrite solar cells. J Mater Sci 55, 9703–9711 (2020). https://doi.org/10.1007/s10853-020-04501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04501-0

Navigation