Skip to main content

Advertisement

Log in

Facile synthesis of hierarchical NiCoP nanowires@NiCoP nanosheets core–shell nanoarrays for high-performance asymmetrical supercapacitor

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transition metal phosphides have been regarded as reliable supercapacitor electrode materials and extensively researched. In this work, a facile three-step way has been taken to synthesize NiCoP@NiCoP core–shell nanoarrays directly grown on carbon cloth, which was used as a high-performance supercapacitor electrode. Compared with the NiCo-LDH precursor and NiCoP nanowire and NiCoP nanosheet, NiCoP@NiCoP core–shell composite shows higher electrochemical performance owing to the integration of the advantages of phosphides and core–shell structure. To be specific, the as-fabricated NiCoP C–S electrode exhibits great electrochemical performance with high specific capacitance (1492.5 F g−1 at 1 A g−1), good rate performance (68.82% of the initial specific capacitance at 15 A g−1) and outstanding cycling stability (maintains 80.9% of the initial capacitances after 5000 cycles at 10 A g−1). Moreover, the assembled NiCoP C–S//rGO asymmetric supercapacitor device delivers a high energy density of 48.13 Wh kg−1 at the power density of 1125 W kg−1 and it still retains 20.94 Wh kg−1 at a high power density of 11250 W kg−1, indicating its great possibility of practical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Chen YZ, Pang WK, Bai HH, Zhou TF, Liu YN, Li S, Guo ZP (2017) Enhanced structural stability of nickel–cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes. Nano Lett 17:429–436

    CAS  Google Scholar 

  2. Chen H, Hu LF, Chen M, Yan Y, Wu LM (2014) Nickel–cobalt layered double hydroxide nanosheets for high- performance supercapacitor electrode materials. Adv Funct Mater 24:934–942

    Google Scholar 

  3. Guan BY, Yu Y, Wang X, Song SY, Lou XW (2017) Formation of onion-like NiCo2S4 particles via sequential ion-exchange for hybrid supercapacitors. Adv Mater 29:1605051

    Google Scholar 

  4. Choudhary N, Li C, Moore J, Nagaiah N, Zhai L, Jung Y, Thomas J (2017) Asymmetric supercapacitor electrodes and devices. Adv Mater 29:1605336

    Google Scholar 

  5. Li X, Wu H, Guan C, Elshahawy AM, Dong Y, Pennycook SJ, Wang J (2019) (Ni, Co)Se2/NiCo-LDH core/shell structural electrode with the cactus-like (Ni, Co)Se2 core for asymmetric supercapacitors. Small 15:e1803895

    Google Scholar 

  6. Wang R, Sui YW, Huang SF, Pu YG, Cao P (2018) High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem Eng J 331:527–535

    CAS  Google Scholar 

  7. Saranya PE, Selladurai S (2018) Facile synthesis of NiSnO3/graphene nanocomposite for high-performance electrode towards asymmetric supercapacitor device. J Mater Sci 53:16022–16046. https://doi.org/10.1007/s10853-018-2742-1

    Article  CAS  Google Scholar 

  8. Zhou BT, Sui YW, Qi JQ, He YZ, Meng QK, Wei FX, Ren YJ, Zhang XP (2019) Synthesis of ultrathin MnO2 nanosheets/bagasse derived porous carbon composite for supercapacitor with high performance. J Electron Mater 48:3026–3035

    CAS  Google Scholar 

  9. Wang QF, Ma Y, Liang X, Zhang DH, Miao MH (2019) Flexible supercapacitors based on carbon nanotube-MnO2 nanocomposite film electrode. Chem Eng J 371:145–153

    CAS  Google Scholar 

  10. Lei ZB, Christov N, Zhang LL, Zhao XS (2011) Mesoporous carbon nanospheres with an excellent electrocapacitive performance. J Mater Chem 21:2274–2281

    CAS  Google Scholar 

  11. Qi JQ, Chang Y, Sui YW, He YZ, Meng QK, Wei FX, Ren YJ, Jin YX (2018) Facile synthesis of Ag-decorated Ni3S2 nanosheets with 3D bush structure grown on rGO and its application as positive electrode material in asymmetric supercapacitor. Adv Mater Interfaces 5:1700985

    Google Scholar 

  12. Barpuzary D, Kim K, Park MJ (2019) Two-dimensional growth of large-area conjugated polymers on ice surfaces: high conductivity and photoelectrochemical applications. ACS Nano 13:3953–3963

    CAS  Google Scholar 

  13. Guo GZ, Sun YY, Fu Q, Ma YB, Zhou YY, Xiong ZY, Liu YQ (2019) Sol-gel synthesis of ternary conducting polymer hydrogel for application in all-solid-state flexible supercapacitor. Int J Hydrogen Energy 44:6103–6115

    CAS  Google Scholar 

  14. Zhang H, Tahir MU, Yan XL, Liu XM, Su XT, Zhang LJ (2019) Ni–Al layered double hydroxide with regulated interlayer spacing as electrode for aqueous asymmetric supercapacitor. Chem Eng J 368:905–913

    CAS  Google Scholar 

  15. Qin QQ, Ou DW, Ye CJ, Chen LX, Lan BB, Yan J, Wu YC (2019) Systematic study on hybrid supercapacitor of Ni–Co layered double hydroxide//activated carbons. Electrochim Acta 305:403–415

    CAS  Google Scholar 

  16. Wei WF, Cui XW, Chen WX, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    CAS  Google Scholar 

  17. Liu X, Wei FX, Sui YW, Qi JQ, He YZ, Meng QK (2018) Polyhedral ternary oxide FeCo2O4: a new electrode material for supercapacitors. J Alloy Compd 735:1339–1343

    CAS  Google Scholar 

  18. Elshahawy AM, Li X, Zhang H, Hu YT, Ho KH, Guan C, Wang J (2017) Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors. J Mater Chem A 5:7494–7506

    CAS  Google Scholar 

  19. Shao YB, Zhao YQ, Li H, Xu CL (2016) Three-dimensional hierarchical NixCo1−xO/NiyCo2−yP@C hybrids on nickel foam for excellent supercapacitors. ACS Appl Mater Interfaces 8:35368–35376

    CAS  Google Scholar 

  20. Lan YY, Zhao HY, Zong Y, Li XH, Sun Y, Feng J, Wang Y, Zheng XT, Du YP (2018) Phosphorization boosts the capacitance of mixed metal nanosheet arrays for high performance supercapacitor electrodes. Nanoscale 10:11775–11781

    CAS  Google Scholar 

  21. Wang X, Yan CY, Sumboja A, Lee PS (2014) High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor. Nano Energy 3:119–126

    CAS  Google Scholar 

  22. Zong Q, Yang H, Wang Q, Zhang Q, Xu J, Zhu Y, Wang H, Wang H, Zhang F, Shen Q (2018) NiCo2O4/NiCoP nanoflake-nanowire arrays: a homogeneous hetero-structure for high performance asymmetric hybrid supercapacitors. Dalton Trans 47:16320–16328

    CAS  Google Scholar 

  23. Hu YM, Liu MC, Hu YX, Yang QQ, Kong LB, Kang L (2016) One-pot hydrothermal synthesis of porous nickel cobalt phosphides with high conductivity for advanced energy conversion and storage. Electrochim Acta 215:114–125

    CAS  Google Scholar 

  24. Jin YH, Zhao CC, Jiang QL, Ji CW (2018) Mesoporous NiCoP microflowers as a superior electrode material for supercapacitors. Appl Surf Sci 450:170–179

    CAS  Google Scholar 

  25. Wang CD, Qian YY, Yang J, Xing SQ, Ding X, Yang Q (2017) Ternary NiCoP nanoparticles assembled on graphene for high-performance lithium-ion batteries and supercapacitors. Rsc Adv 7:26120–26124

    CAS  Google Scholar 

  26. Li X, Wu HJ, Elshahawy AM, Wang L, Pennycook SJ, Guan C, Wang J (2018) Cactus-like NiCoP/NiCo–OH 3D architecture with tunable composition for high-performance electrochemical capacitors. Adv Funct Mater 28:1800036

    Google Scholar 

  27. Li KD, Zhao T, Wang HF, Zhang S, Deng C (2018) From 1D nanotube arrays to 2D nanosheet networks on silver-coated textiles: new insights into the factors determining the performance of a core-shell hierarchical structure for wearable supercapacitors. J Mater Chem A 6:1561–1573

    CAS  Google Scholar 

  28. Liang HY, Lin JH, Jia H, Chen SL, Qi JL, Cao J, Lin TS, Fei WD, Feng JC (2018) Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors. J Mater Chem A 6:15040–15046

    CAS  Google Scholar 

  29. Zhao Y, Hu LF, Zhao SY, Wu LM (2016) Preparation of MnCo2O4@Ni(OH)(2) core–shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance. Adv Funct Mater 26:4085–4093

    CAS  Google Scholar 

  30. Xu KB, Li WY, Liu Q, Li B, Liu XJ, An L, Chen ZG, Zou RJ, Hu JQ (2014) Hierarchical mesoporous NiCo2O4@MnO2 core–shell nanowire arrays on nickel foam for aqueous asymmetric supercapacitors. J Mater Chem A 2:4795–4802

    CAS  Google Scholar 

  31. Chang XW, Li WL, Liu YH, He M, Zheng XL, Bai JB, Ren ZY (2019) Hierarchical NiCo2S4@NiCoP core–shell nanocolumn arrays on nickel foam as a binder-free supercapacitor electrode with enhanced electrochemical performance. J Colloid Interface Sci 538:34–44

    CAS  Google Scholar 

  32. Jiang L, Sui Y, Qi J, Chang Y, He Y, Meng Q, Wei F, Sun Z, Jin Y (2017) Structure dependence of Fe–Co hydroxides on Fe/Co ratio and their application for supercapacitors. Part Part Syst Charact 34:16000239

    Google Scholar 

  33. Li W, Zhang B, Lin R, Ho-Kimura S, He G, Zhou X, Hu J, Parkin IP (2018) A dendritic nickel cobalt sulfide nanostructure for alkaline battery electrodes. Adv Funct Mater 28:1705937

    Google Scholar 

  34. Xiao J, Wan L, Yang S, Xiao F, Wang S (2014) Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett 14:831–838

    CAS  Google Scholar 

  35. Yuan CZ, Li JY, Hou LR, Zhang XG, Shen LF, Lou XW (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22:4592–4597

    CAS  Google Scholar 

  36. Niu HJ, Zhang L, Feng JJ, Zhang QL, Huang H, Wang AJ (2019) Graphene-encapsulated cobalt nanoparticles embedded in porous nitrogen-doped graphitic carbon nanosheets as efficient electrocatalysts for oxygen reduction reaction. J Colloid Interface Sci 552:744–751

    CAS  Google Scholar 

  37. Zhang XM, Wu AP, Wang XW, Tian CG, An RY, Fu HG (2018) Porous NiCoP nanosheets as efficient and stable positive electrodes for advanced asymmetric supercapacitors. J Mater Chem A 6:17905–17914

    CAS  Google Scholar 

  38. Chen HY, Jin MX, Zhang L, Wang AJ, Yuan J, Zhang QL, Feng JJ (2019) One-pot aqueous synthesis of two-dimensional porous bimetallic PtPd alloyed nanosheets as highly active and durable electrocatalyst for boosting oxygen reduction and hydrogen evolution. J Colloid Interface Sci 543:1–8

    CAS  Google Scholar 

  39. Ledendecker M, Calderon SK, Papp C, Steinruck HP, Antonietti M, Shalom M (2015) The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew Chem Int Edit 54:12361–12365

    CAS  Google Scholar 

  40. Niu HJ, Chen HY, Wen GL, Feng JJ, Zhang QL, Wang AJ (2019) One-pot solvothermal synthesis of three-dimensional hollow PtCu alloyed dodecahedron nanoframes with excellent electrocatalytic performances for hydrogen evolution and oxygen reduction. J Colloid Interface Sci 539:525–532

    CAS  Google Scholar 

  41. Gao M, Wang W-K, Zhang X, Jiang J, Yu H-Q (2018) Fabrication of metallic nickel–cobalt phosphide hollow microspheres for high-rate supercapacitors. J Phys Chem C 122:25174–25182

    CAS  Google Scholar 

  42. Zong Q, Yang H, Wang QQ, Zhang QL, Xu J, Zhu YL, Wang HY, Wang H, Zhang F, Shen QH (2018) NiCo2O4/NiCoP nanoflake-nanowire arrays: a homogeneous hetero-structure for high performance asymmetric hybrid supercapacitors. Dalton Trans 47:16320–16328

    CAS  Google Scholar 

  43. Lin JH, Zhong ZX, Wang HH, Zheng XH, Wang YH, Qi JL, Cao J, Fei WD, Huang YD, Feng JC (2018) Rational constructing free-standing Se doped nickel-cobalt sulfides nanotubes as battery-type electrode for high-performance supercapattery. J Power Sources 407:6–13

    CAS  Google Scholar 

  44. Pang H, Wang S, Shao W, Zhao S, Yan B, Li X, Li S, Chen J, Du W (2013) Few-layered CoHPO4∙3H2O ultrathin nanosheets for high performance of electrode materials for supercapacitors. Nanoscale 5:5752–5757

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds for the Central Universities (No. 2019XKQYMS06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiqiu Qi or Yaojian Ren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1517 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Hu, R., Qi, J. et al. Facile synthesis of hierarchical NiCoP nanowires@NiCoP nanosheets core–shell nanoarrays for high-performance asymmetrical supercapacitor. J Mater Sci 55, 1157–1169 (2020). https://doi.org/10.1007/s10853-019-04011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-04011-8

Navigation