Skip to main content
Log in

Spark plasma sintering for high-speed diffusion bonding of the ultrafine-grained near-α Ti–5Al–2V alloy with high strength and corrosion resistance for nuclear engineering

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The paper demonstrates the prospects of spark plasma sintering (SPS) for the high-speed diffusion bonding of the high-strength ultrafine-grained (UFG) near-α Ti–5Al–2V alloy. The effect of increased diffusion bonding intensity in the UFG Ti alloys is discussed also. The bonding areas of the UFG near-α Ti–5Al–2V alloy obtained by SPS are featured by high density, strength, and corrosion resistance. The rate of bonding in the UFG alloys has been shown to depend on the heating rate non-monotonously (with a pronounced maximum). At the stage of continuous heating and isothermic holding, the bonding kinetics was found to be determined by the exponential creep rate, the intensity of which in the coarse-grained alloys is limited by the diffusion rate in the crystal lattice α-Ti. In the UFG alloy, the exponential creep processes associated with gliding and climb of dislocations, the activation energy of which corresponds to the diffusion activation energy in the lattice dislocation nuclei, may take place simultaneously with the grain boundary sliding and Coble creep, the activation energy of which corresponds to the grain boundary diffusion activation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

Similar content being viewed by others

Notes

  1. In our opinion, the origin of the forming of the TiC nanoparticles is the presence of carbon in the titanium alloy (see Table 1), the concentration of which does not exceed the permissible value but appears to be enough for forming the TiC particles.

  2. The differences in the initial shrinkage level result from the ≈ 0.02 mm difference in the specimen heights.

  3. Since the average grain size in the weld in the UFG alloys was almost the same to the one of the metals outside the weld (Fig. 14), the origin of the reduced weld microhardness in the UFG alloys is still unclear. We think the reduced weld microhardness in the UFG alloys to be related most probably to the grain boundary recovery leading to the reduced density of defects in the UFG alloy grain boundaries. The second probable origin of the increased microhardness of the weld-affected zone in the CG alloys may be the creep (as discussed in more detail below), which is known to be accompanied by the formation of the dislocation substructures and low-angle boundaries [46, 47]. This hypothesis was confirmed by the results of EBSD analysis of the welds for the CG materials (Fig. 10a), in which the low-angle boundaries with the grain boundary angle of less than 2° were observed outside the weld predominantly (Fig. 10b).

  4. The weld specimen was heated at the same rate (100 °С/min) up to 700 °С and then was held at this temperature for 10 min under different values of the uniaxial pressure σs = 50, 70, and 100 MPa (Fig. 21).

References

  1. Lütjering G, Williams JC (2007) Titanium. Springer, Berlin, p 415. https://doi.org/10.1007/978-3-540-73036-1

    Book  Google Scholar 

  2. Burte H (1973) Titanium science and technology. Springer, New York, p 341. https://doi.org/10.1007/978-1-4757-1346-6

    Book  Google Scholar 

  3. Gorynin IV, Chechulin BB (1990) Titan in mechanical engineering. Mashinostroenie, Moscow, p 400 (in Russian)

    Google Scholar 

  4. Bilobrov I, Trachevsky V (2011) Approach to modify the properties of titanium alloys for use in nuclear industry. J Nucl Mater 415(2):222–225. https://doi.org/10.1016/j.jnucmat.2011.05.056

    Article  CAS  Google Scholar 

  5. Oryshchenko AS, Gorynin IV, Leonov VP, Kudryavtsev AS, Mikhailov VI, Chudakov EV (2015) Marine titanium alloys: present and future. Inorg Mater Appl Res 6(6):571–579. https://doi.org/10.1134/S2075113315060106

    Article  Google Scholar 

  6. Leonov VP, Gorynin IV, Kudryavtsev AS, Ivanova LA, Travin VV, Lysenko LV (2015) Titanium alloys in steam turbine construction. Inorg Mater Appl Res 6(1):580–590. https://doi.org/10.1134/S2075113315060076

    Article  Google Scholar 

  7. Rodchenkov BS, Kozlov AV, Kuznetsov YuG, Kalinin GM, Strebkov YuS (2007) Irradiation behavior of Ti–4Al–2V (ПT-3B) alloy for ITER blanket modules flexible attachment. J Nucl Mater 367–370:1312–1315. https://doi.org/10.1016/j.jnucmat.2007.03.261

    Article  CAS  Google Scholar 

  8. Leonov VP, Chudakov EV, Malinkina YY (2017) The influence of microadditives of ruthenium on the structure, corrosive-mechanical strength, and Fractography of destruction of pseudo-alpha-titanium alloys. Inorg Mater Appl Res 8(4):556–565. https://doi.org/10.1134/S2075113317040165

    Article  Google Scholar 

  9. Kozhevnikov OA, Nesterova EV, Rybin VV, Yarmolovich II (1999) Influence of neutron irradiation of deformability and fracture micromechanisms of titanium α-alloys. J Nucl Mater 271–272:472–477. https://doi.org/10.1016/S0022-3115(98)00803-4

    Article  Google Scholar 

  10. Malinkina YY, Chudakov EV, Leonov VP (2017) The influence of ruthenium on structure, corrosion and mechanical properties, and fatigue characteristics of titanium α-alloys in corrosive environment. Inorg Mater Appl Res 8(6):906–913. https://doi.org/10.1134/S2075113317060090

    Article  Google Scholar 

  11. Semenova IP, Polyakov AV, Raab GI, Lowe TC, Valiev RZ (2012) Enhanced fatigue properties of ultrafine-grained Ti rods processed by ECAP-conform. J Mater Sci 47(22):7777–7781. https://doi.org/10.1007/s10853-012-6675-9

    Article  CAS  Google Scholar 

  12. Medvedev A, Ng HP, Lapovok R, Estrin Y, Lowe TC, Anumalasetty VN (2015) Comparison of laboratory-scale and industrial-scale equal channel angular pressing of commercial purity titanium. Mater Lett 145:308–311. https://doi.org/10.1016/j.matlet.2015.01.051

    Article  CAS  Google Scholar 

  13. Segal VM (2018) Review: Modes and processes of severe plastic deformation (SPD). Materials 11(7):1175. https://doi.org/10.3390/ma11071175

    Article  CAS  Google Scholar 

  14. Chuvil’deev VN, Kopylov VI, Nokhrin AV, Tryaev PV, Kozlova NA, Tabachkova NYu, Lopatin YuG, Ershova AV, Mikhaylov AS, Gryaznov MYu, Chegurov MK (2017) Study of mechanical properties and corrosive resistance of ultrafine-grained α-titanium alloy Ti–5Al–2V. J Alloys Compd 723:354–367. https://doi.org/10.1016/j.jallcom.2017.06.220

    Article  CAS  Google Scholar 

  15. Afonso CRM, Amigó A, Stolyarov V, Gunderov D, Amigó V (2017) From porous to dense nanostructured β-Ti alloys through high-pressure torsion. Sci Rep 7(1):13618. https://doi.org/10.1038/s41598-017-13074-z

    Article  CAS  Google Scholar 

  16. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53(6):893–979. https://doi.org/10.1016/j.pmatsci.2008.03.002

    Article  CAS  Google Scholar 

  17. Straumal BB, Kilmametov AR, Ivanisenko Y, Mazilkin AA, Valiev RZ, Afonikova NS, Gornakova AS, Hahn H (2018) Diffusive and displacive phase transitions in Ti–Fe and Ti–Co alloys under high pressure torsion. J Alloys Compd 735:2281–2286. https://doi.org/10.1016/j.jallcom.2017.11.317

    Article  CAS  Google Scholar 

  18. Kilmametov AR, Ivanisenko Y, Mazilkin AA, Straumal BB, Gornakova AS, Fabrichnaya OB, Kriegel MJ, Rafaja D, Hahn H (2018) The α → ω and β → ω phase transformations in Ti–Fe under high-pressure torsion. Acta Mater 144:337–351. https://doi.org/10.1016/j.actamat.2017.10.051

    Article  CAS  Google Scholar 

  19. Zherebtsov S, Murzinova M, Salishev G, Semiatin SL (2011) Spheroidization of the lamellar microstructure in Ti–6Al–4V alloy during warm deformation and annealing. Acta Mater 59(10):4138–4150. https://doi.org/10.1016/j.actamat.2011.03.037

    Article  CAS  Google Scholar 

  20. Zherebtsov S, Kudryavtsev E, Kostjuchenko S, Malysheva S, Salishchev GA (2012) Strength and ductility-related properties of ultrafine-grained two-phase titanium alloy produced by warm multiaxial forging. Mater Sci Eng A 536:190–196. https://doi.org/10.1016/j.msea.2011.12.102

    Article  CAS  Google Scholar 

  21. Pachla W, Kulczyk M, Prybysz S, Skiba J, Wojciechowski K, Przybysz M, Topolski K, Sobolewski A, Charkiewicz M (2015) Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2. J Mater Process Technol 221:255–268. https://doi.org/10.1016/j.jmatprotec.2015.02.027

    Article  CAS  Google Scholar 

  22. Seixas MR, Bortolini C, Pereira A, Nakazato RZ, Popat KC, Alves Claro APR (2018) Development of new quaternary alloy Ti–25Ta–25Nb–3Sn for biomedical applications. Mater Res Exp 5(2):025402. https://doi.org/10.1088/2053-1591/aa87c8

    Article  CAS  Google Scholar 

  23. Topol’s’kyi VP, Petrychenko IK, Akhonin SV, Mishchenko RM (2008) Weldability of T110 high-strength titanium alloy. Mater Sci 44(3):413–417. https://doi.org/10.1007/s11003-008-9098-7

    Article  CAS  Google Scholar 

  24. Lukoyanov AV (2014) Formation of pores in the weld metal in automatic argon-shielded arc welding of titanium alloys. Weld Int 28(4):301–303. https://doi.org/10.1080/09507116.2013.796682

    Article  Google Scholar 

  25. Gao F, Li P, Jiang P, Liao Z (2018) The effect of constraint conditions on microstructure and properties of titanium alloy electron beam welding. Mater Sci Eng A 721:117–124. https://doi.org/10.1016/j.msea.2018.02.069

    Article  CAS  Google Scholar 

  26. Su M-L, Li J-N, Liu K-G, Qi W-J, Weng F, Zhang Y-B, Li J-S (2019) Mechanical property and characterization of TA1 titanium alloy sheets welded by vacuum electron beam welding. Vacuum 159:315–318. https://doi.org/10.1016/j.vacuum.2018.10.027

    Article  CAS  Google Scholar 

  27. Sanders DG, Ramulu M (2004) Examination of superplastic forming combined with diffusion bonding for titanium: perspective from experience. J Mater Eng Perform 13(6):744–752. https://doi.org/10.1361/10599490421574

    Article  CAS  Google Scholar 

  28. Aydin K, Kaya Y, Kahraman N (2012) Experimental study of diffusion welding/bonding of titanium to copper. Mater Des 37:356–368. https://doi.org/10.1016/j.matdes.2012.01.026

    Article  CAS  Google Scholar 

  29. Mironov S, Sato YS, Kokawa H (2018) Friction-stir welding and processing of Ti–6Al–4V titanium alloy: a review. J Mater Sci Technol 34(1):58–72. https://doi.org/10.1016/j.jmst.2017.10.018

    Article  Google Scholar 

  30. Shaysultanov D, Stepanov N, Malopheyev S, Vysotskiy I, Sanin V, Mironov S, Kaibyshev R, Salishchev G, Zherebtsov SV (2018) Friction stir welding of a carbon-doped CoCrFeNiMn high-entropy alloy. Mater Charact 145:353–361. https://doi.org/10.1016/j.matchar.2018.08.063

    Article  CAS  Google Scholar 

  31. Rai R, De A, Bhadeshia HKDH, BebRoy T (2011) Review: friction stir welding tools. Sci Technol Weld Joing 16(4):325–342. https://doi.org/10.1179/1362171811Y.0000000023

    Article  CAS  Google Scholar 

  32. Ermachenko AG, Lutfullin R Ya, Mulyukov RR (2011) Advanced technologies of processing titanium alloys and their applications in industry. Rev Adv Mater Sci 29(1):68–82

    CAS  Google Scholar 

  33. Kaibyshev OA, Lutfullin RA, Berdin VK (1994) The effect of superplasticity on the solid state weldability of the titanium alloy Ti4.5Al3Mo–1V. Acta Metall Mater 42(8):2609–2615. https://doi.org/10.1016/0956-7151(94)90202-X

    Article  CAS  Google Scholar 

  34. Olevsky E, Dudina D (2018) Field-assisted sintering. Springer, Berlin. https://doi.org/10.1007/978-3-319-76032-2

    Book  Google Scholar 

  35. Hulbert DM, Anders A, Dudina DV, Anderson J, Jiang D, Unuvar C, Anselmi-Tamburini U, Lavernia EJ (2008) The absence of plasma in “spark plasma sintering”. J Appl Phys 104(3):033305. https://doi.org/10.1063/1.2963701

    Article  CAS  Google Scholar 

  36. Tokita M (2013) Spark plasma sintering (SPS) method, systems, and applications, chapter 11.2.3. In: Somiya S (ed) Handbook of advanced ceramics, 2nd edn. Academic Press, pp 1149–1177. https://dx.doi.org/10.1016/B978-0-12-385469-8.00060-5

  37. Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation materials: a review of the spark plasma sintering method. J Mater Sci 41(3):763–777. https://doi.org/10.1007/s10853-006-6555-2

    Article  CAS  Google Scholar 

  38. Chuvil’deev VN, Panov DV, Boldin MS et al (2015) Structure and properties of advanced materials obtained by spark plasma sintering. Acta Astronaut 109:172–176. https://doi.org/10.1016/j.actaastro.2014.11.008

    Article  CAS  Google Scholar 

  39. Long Y, Zhang H, Wang T, Huang X, Li Y, Wu J, Chen H (2013) High-strength Ti–6Al–4V with ultrafine-grained structure fabricated by high energy ball milling and spark plasma sintering. Mater Sci Eng A 585:408–414. https://doi.org/10.1016/j.msea.2013.07.078

    Article  CAS  Google Scholar 

  40. Karakozov BK, Skakov MK, Kurbanbekov SR, Baklanov VV, Sintnikov AA, Dudina DV, Maly VI, Yakovlev VI (2018) Structural and phase transformations in alloys during spark plasma sintering of Ti + 23.5at.%Al + 21at.%Nb powder mixtures. Inorg Mater 54(1):37–41. https://doi.org/10.1134/S0020168518010053

    Article  CAS  Google Scholar 

  41. Weston NS, Derguti F, Tudball A, Jackson M (2015) Spark plasma sintering of commercial and development titanium alloys powders. J Mater Sci 50(14):4860–4878. https://doi.org/10.1007/s10853-015-9029-6

    Article  CAS  Google Scholar 

  42. Chuvil’deev VN, Boldin MS, Dyatlova YaG et al (2015) A comparative study of the hot pressing and spark plasma sintering of Al2O3–ZrO2–Ti(C, N) powders. Inorg Mater 51(10):1047–1053. https://doi.org/10.1134/S0020168515090034

    Article  CAS  Google Scholar 

  43. Chuvil’deev VN, Nokhrin AV, Boldin MS, Baranov GV, Sakharov NV, Belov VYu, Lantsev EA, Popov AA, Melekhin NV, Lopatin YuG, Blagoveshchenskiy YuV, Isaeva NV (2019) Impact of mechanical activation on sintering kinetics and mechanical properties of ultrafine-grained 95W–Ni–Fe tungsten heavy alloys. J Alloys Compd 773:666–688. https://doi.org/10.1016/j.jallcom.2018.09.176

    Article  CAS  Google Scholar 

  44. Chuvil’deev VN, Blagoveshchenskiy YuV, Nokhrin AV et al (2017) Spark plasma sintering of tungsten carbide nanopowders obtained through DC arc plasma synthesis. J Alloys Compd 708:547–561. https://doi.org/10.1016/j.jallcom.2017.03.035

    Article  CAS  Google Scholar 

  45. Rahaman MN (2003) Ceramic processing and sintering, 2nd edn. Marcel Dekker Inc., New York, p 876

    Google Scholar 

  46. Derby B, Ashby MF (1987) A microstructural model for primary creep. Acta Metall 35:1349–1353. https://doi.org/10.1016/0001-6160(87)90017-4

    Article  Google Scholar 

  47. Ashby MF (1983) Mechanisms of deformation and fracture. Adv Appl Mech 23:117–177. https://doi.org/10.1016/S0065-2156(08)70243-6

    Article  Google Scholar 

  48. Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon Press, London, p 328

    Google Scholar 

  49. Kral P, Dvorak J, Zherebtsov S, Salishchev G, Kvapilova M, Sklenicka V (2013) Effect of severe plastic deformation of creep behaviour of a Ti–6Al–4V alloy. J Mater Sci 48:4789–4795. https://doi.org/10.1007/s10853-013-7160-9

    Article  CAS  Google Scholar 

  50. Stepanova E, Grabovetskaya G, Zabudchenko O (2018) Hydrogen effect on the creep of titanium alloy of the Ti–Al–V system. Defect Diffus Forum 385:212–217. https://doi.org/10.4028/www.scientific.net/DDF.385.212

    Article  Google Scholar 

  51. Kolobov YuR, Grabovetskaya GP, Ivanov KV, Valiev RZ, Zhu YT (2004) Grain boundary diffusion and creep of UFG Ti and Ti–6Al–4V alloy processed by severe plastic deformation. In: YT Zhu, TG Langdon, RZ Valiev, S Semiatin et al (eds) Proceedings of “ultrafine grained materials III”, pp 621–628

  52. Dudarev EF, Grabovetskaya GP, Kolobov YuR, Bakach GP, Kashin OA, Zhu TYu (2004) Deformation behavior and mechanical properties of ultrafine-grained titanium produced by equal-channel angular pressing. Russ Metall (Metally) 2004(1):45–82 (in Russian)

    Google Scholar 

  53. Luo L, Zhao X, Liu X, Yang X (2017) Creep behavior of UFG CP Ti at room temperature. IOP Conf Ser Mater Sci Eng 250(1):012062. https://doi.org/10.1088/1757-899X/250/1/012062

    Article  Google Scholar 

  54. Liu X, Zhang Q, Zhao X, Yang X, Luo L (2016) Ambient-temperature nanoindentation creep in ultrafine-grained titanium processed by ECAP. Mater Sci Eng A 676:73–79. https://doi.org/10.1016/j.msea.2016.08.111

    Article  CAS  Google Scholar 

  55. Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34:1679–1682. https://doi.org/10.1063/1.1702656

    Article  Google Scholar 

  56. Nieh TG, Wadsworth D, Sherby OD (1997) Superplasticity in metals and ceramics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  57. Perevezentsev VN, Rybin VV, Chuvil’deev VN (1992) The theory of structural superplasticity: I. The physical nature of the superplasticity phenomenon. Acta Metall Mater 40(5):887–894. https://doi.org/10.1016/0956-7151(92)90065-M

    Article  CAS  Google Scholar 

  58. Young WS, Culter IB (1970) Initial sintering with constant rates of heating. J Am Ceram Soc 53(12):659–663. https://doi.org/10.1111/j.1151-2916.1970.tb12036.x

    Article  CAS  Google Scholar 

  59. Nanda Kumar AK, Watabe M, Kurokawa K (2011) The sintering kinetics of ultrafine tungsten carbide powders. Ceram Int 37:2643–2654. https://doi.org/10.1016/j.ceramint.2011.04.011

    Article  CAS  Google Scholar 

  60. Nanda Kumar AK, Watabe M, Kurokawa K (2012) The influence of Si on the microstructure and sintering behavior of ultrafine WC. Philos Mag 92(32):3950–3967. https://doi.org/10.1080/14786435.2012.700127

    Article  CAS  Google Scholar 

  61. Chuvil’deev VN, Kopylov VI, Nokhrin AV, Lopatin YuG, Kozlova NA, Tabachkova NYu, Semenycheva AV, Smirnova ES, Gryaznov MYu, Pirozhnikova OE (2015) The effect of the state of grain boundaries on the thermal stability of the structure of a submicrocrystalline titanium alloy. Tech Phys Lett 41(6):515–518. https://doi.org/10.1134/S1063785015060024

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed with the support of the Russian Science Foundation (Grant No. 16-13-00066). The authors thank A.V. Piskunov and N.V. Sakharov (Lobachevsky Univ.) for developing the methods of EBSD analysis of the titanium alloy joints. The authors thank E.A. Lantsev (Lobachevsky Univ.) for conducting the tests in order to measure the temperature–shrinkage dependencies L0(T) without a specimen using Dr. Sinter® SPS-625 setup in different heating modes. The authors thank Afrikantov OKB Mechanical Engineering JSC for performing the argon-arc and electron-beam welding of the UFG alloy specimens.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksey Vladimirovich Nokhrin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also form a part of an ongoing study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuvil’deev, V.N., Nokhrin, A.V., Kopylov, V.I. et al. Spark plasma sintering for high-speed diffusion bonding of the ultrafine-grained near-α Ti–5Al–2V alloy with high strength and corrosion resistance for nuclear engineering. J Mater Sci 54, 14926–14949 (2019). https://doi.org/10.1007/s10853-019-03926-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03926-6

Navigation