Skip to main content

Advertisement

Log in

Toward obtaining 2D and 3D and 1D PtPN with pentagonal pattern

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We apply an alloying strategy to single-layer PtN2 and PtP2, aiming to obtain a single-layer Pt–P–N alloy with a relatively low formation energy with reference to its bulk structure. We perform structure search based on a cluster-expansion method and predict single-layer and bulk PtPN consisting of pentagonal networks. The formation energy of single-layer PtPN is significantly lower in comparison with that of single-layer PtP2. The predicted bulk structure of PtPN adopts a structure that is similar to the pyrite structure. We also find that single-layer pentagonal PtPN, unlike PtN2 and PtP2, exhibits a sizable, direct PBE band gap of 0.84 eV. Furthermore, the band gap of single-layer pentagonal PtPN calculated with the hybrid density functional theory is 1.60 eV, which is within visible light spectrum and promising for optoelectronics applications. In addition to predicting PtPN in the 2D and 3D forms, we study the flexural rigidity and electronic structure of PtPN in the nanotube form. We find that single-layer PtPN has similar flexural rigidity to that of single-layer carbon and boron nitride nanosheets and that the band gaps of PtPN nanotubes depend on their radii. Our work shed light on obtaining an isolated 2D planar, pentagonal PtPN nanosheet from its 3D counterpart and on obtaining 1D nanotubes with tunable band gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Farmer DB, Lin Y-M, Avouris P (2010) Graphene field-effect transistors with self-aligned gates. Appl Phys Lett 97:013103

    Article  Google Scholar 

  2. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270

    Article  Google Scholar 

  3. Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2008) Organic solar cells with solution-processed graphene transparent electrodes. Appl Phys Lett 92:237

    Google Scholar 

  4. Dean JJ, van Driel HM (2009) Second harmonic generation from graphene and graphitic films. Appl Phys Lett 95:261910

    Article  Google Scholar 

  5. Xia F, Mueller T, Lin YM, Valdes-Garcia A, Avouris P (2009) Ultrafast graphene photodetector. Nat Nanotechnol 4:839

    Article  Google Scholar 

  6. Wang H, Xu Z, Kohandehghan A, Li Z, Cui K, Tan X, Stephenson TJ, King’Ondu CK, Holt CM, Olsen BC (2013) Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7:5131–5141

    Article  Google Scholar 

  7. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) The role of graphene for electrochemical energy storage. Nat Mater 14:271

    Article  Google Scholar 

  8. Liu Q, Chen C, Du M, Wu Y, Ren C, Ding K, Song M, Huang C (2018) Porous hexagonal boron nitride sheets: effect of hydroxyl and secondary amino groups on photocatalytic hydrogen evolution. ACS Appl Nano Mater 1:4566–4575

    Article  Google Scholar 

  9. Li L, Gong P, Sheng D, Wang S, Wang W, Zhu X, Shi X, Wang F, Han W, Yang S (2018) Highly in-plane anisotropic 2D GeAs2 for polarization-sensitive photodetection. Adv Mater 30:1804541

    Article  Google Scholar 

  10. Rao M (2017) Exhaustive search of convex pentagons which tile the plane. arXiv preprint arXiv:1708.00274

  11. Liu Z, Wang H, Sun J, Sun R, Wang Z, Yang J (2018) Penta-Pt2N4: an ideal two-dimensional material for nanoelectronics. Nanoscale 10:16169–16177

    Article  Google Scholar 

  12. Liu L, Zhuang HL (2018) PtP2: an example of exploring the hidden Cairo tessellation in the pyrite structure for discovering novel two-dimensional materials. Phys Rev Mater 2:114003

    Article  Google Scholar 

  13. Yuan J-H, Song Y-Q, Chen Q, Xue K-H, Miao X-S (2019) Single-layer planar penta-X2N4 (X = Ni, Pd and Pt) as direct-bandgap semiconductors from first principle calculations. Appl Surf Sci 469:456–462

    Article  Google Scholar 

  14. Zhao K, Li X, Wang S, Wang Q (2019) 2D planar penta-MN 2 (M = Pd, Pt) sheets identified through structure search. Phys Chem Chem Phys 21:246–251

    Article  Google Scholar 

  15. Liu L, Wang D, Lakamsani S, Huang W, Price C, Zhuang HL (2019) Dimension engineering of single-layer PtN2 with the Cairo tessellation. J Appl Phys 125:204302

    Article  Google Scholar 

  16. Crowhurst JC, Goncharov AF, Sadigh B, Evans CL, Morrall PG, Ferreira JL, Nelson A (2006) Synthesis and characterization of the nitrides of platinum and iridium. Science 311:1275–1278

    Article  Google Scholar 

  17. Thomassen L (1929) Über kristallstrukturen einiger binärer verbindungen der platinmetalle II. Z Phys Chem 4:277–287

    Google Scholar 

  18. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169

    Article  Google Scholar 

  19. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865

    Article  Google Scholar 

  20. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953

    Article  Google Scholar 

  21. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758

    Article  Google Scholar 

  22. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188

    Article  Google Scholar 

  23. Van De Walle A, Asta M, Ceder G (2002) The alloy theoretic automated toolkit: a user guide. Calphad 26:539–553

    Article  Google Scholar 

  24. Mann C, McLoud-Mann J, Von Derau D (2018) Convex pentagons that admit i-block transitive tilings. Geom Dedic 194:141–167

    Article  Google Scholar 

  25. Ge HJS, Ernzerhof M (2006) Erratum: “Hybrid functionals based on a screened Coulomb potential” [J Chem Phys 118, 8207 (2003)]. J Chem Phys 124:219906

    Article  Google Scholar 

  26. Singh AK, Mathew K, Zhuang HL, Hennig RG (2015) Computational screening of 2D materials for photocatalysis. J Phys Chem Lett 6:1087–1098

    Article  Google Scholar 

  27. Fu D, Zhao X, Zhang Y-Y, Li L, Xu H, Jang A-R, Yoon SI, Song P, Poh SM, Ren T (2017) Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. J Am Chem Soc 139:9392–9400

    Article  Google Scholar 

  28. Cherian R, Mahadevan P (2007) Elastic properties of carbon nanotubes: an atomistic approach. J Nanosci Nanotechnol 7:1779–1782

    Article  Google Scholar 

  29. Landau LD, Lifshitz EM (1970) Theory of elasticity, 2nd edn. Pergamon Press, Oxford, pp 62–66

    Google Scholar 

  30. Kudin KN, Scuseria GE, Yakobson BI (2001) C2F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406

    Article  Google Scholar 

  31. Ru CQ (2000) Effective bending stiffness of carbon nanotubes. Phys Rev B 62:9973–9976

    Article  Google Scholar 

  32. Pantano A, Parks DM, Boyce MC (2004) Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solids 52:789–821

    Article  Google Scholar 

  33. Janas D (2018) Towards monochiral carbon nanotubes: a review of progress in the sorting of single-walled carbon nanotubes. Mater Chem Front 2:36–63

    Article  Google Scholar 

  34. Qian S, Sheng X, Xu X, Wu Y, Lu N, Qin Z, Wang J, Zhang C, Feng E, Huang W (2019) Penta-MX 2 (M = Ni, Pd and Pt; X = P and As) monolayers: direct band-gap semiconductors with high carrier mobility. J Mater Chem C 7:3569–3575

    Article  Google Scholar 

Download references

Acknowledgements

We thank the start-up funds from Arizona State University. This research used the computational resources of the AGAVE computer cluster at Arizona State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houlong L. Zhuang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Liu, L. & Zhuang, H.L. Toward obtaining 2D and 3D and 1D PtPN with pentagonal pattern. J Mater Sci 54, 14029–14037 (2019). https://doi.org/10.1007/s10853-019-03886-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03886-x

Navigation