Skip to main content
Log in

Synthesis of two novel H4TCPBDA-based metal–organic frameworks and their application in lead ion adsorption

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two novel porous metal–organic frameworks (MOFs) Cu(TCPBDA) and Cd(TCPBDA) based on a new ligand, namely N,N,N′,N′-tetrakis(4-carboxyphenyl)biphenyl-4,4′-diamine (H4TCPBDA), were synthesized by solvent thermal method and characterized with scanning electron microscopy, powder X-ray diffraction, BET analysis and spectrofluorometry. The static adsorption of the two MOFs for lead ions (Pb2+) was investigated. Cu(TCPBDA) showed a higher adsorption capacity for Pb2+ compared with Cd(TCPBDA), and its maximum adsorption capacity was 300 mg/g. The adsorption performance of Cu(TCPBDA) was then further studied. It was found that the adsorption of Cu(TCPBDA) for Pb2+ fitted the Freundlich model and pseudo-second-order equation very well. The adsorption ability of Cu(TCPBDA) was applied to fast and efficient adsorption for Pb2+ in toner. The results indicates that Cu(TCPBDA) is a promising material in adsorption and removal of heavy metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Blake DA, Jones RM, Blake RC, Pavlov AR, Darwish IA, Yu HN (2001) Antibody-based sensors for heavy metal ions. Biosens Bioelectron 16:799–809

    Article  CAS  Google Scholar 

  2. Rodriguez BB, Bolbot JA, Tothill IE (2004) Development of urease and glutamic dehydrogenase amperometric assay for heavy metals screening in polluted samples. Biosens Bioelectron 19:1157–1167

    Article  CAS  Google Scholar 

  3. Cui HZ, Li YL, Liu S, Zhang JF, Zhou Q, Zhong R, Yang ML, Hou XF (2017) Novel Pb(II) ion-imprinted materials based on bis-pyrazolyl functionalized mesoporous silica for the selective removal of Pb(II) in water samples. Micropor Mesopor Mat 241:165–177

    Article  CAS  Google Scholar 

  4. Barciela-Alonso MC, Plata-Garcia V, Rouco-Lopez A, Moreda-Pineiro A, Bermejo-Barrera P (2014) Ionic imprinted polymer based solid phase extraction for cadmium and lead pre-concentration/determination in seafood. Microchem J 114:106–110

    Article  CAS  Google Scholar 

  5. Pourreza N, Naghdi T (2014) Silicon carbide nanoparticles as an adsorbent for solid phase extraction of lead and determination by flame atomic absorption spectrometry. J Ind Eng Chem 20:3502–3506

    Article  CAS  Google Scholar 

  6. Su RH, Ruan GH, Chen ZY, Du FY, Li JP (2015) Application of mercapto-silica polymerized high internal phase emulsions for the solid-phase extraction and preconcentration of trace lead(II). J Sep Sci 38:4262–4268

    Article  CAS  Google Scholar 

  7. Wang MH, Sun ZK, Yue Q, Yang J, Wang XQ, Deng YH, Yu CZ, Zhao DY (2014) An interface-directed coassembly approach to synthesize uniform large-pore mesoporous silica spheres. J Am Chem Soc 136:1884–1892

    Article  CAS  Google Scholar 

  8. Fan JW, Ran XQ, Ren Y, Wang C, Yang JP, Teng W, Zou LY, Sun Y, Lu B, Deng YH, Zhao DY (2016) Ordered mesoporous carbonaceous materials with tunable surface property for enrichment of hexachlorobenzene. Langmuir 32:9922–9929

    Article  CAS  Google Scholar 

  9. Alqadami AA, Khan MA, Siddiqui MR, Alothman ZA (2018) Development of citric anhydride anchored mesoporous MOF through post synthesis modification to sequester potentially toxic lead(II) from water. Micropor Mesopor Mat 261:198–206

    Article  Google Scholar 

  10. Huanga Y, Zenga XF, Guo LL, Lan JH, Zhang LL, Cao DP (2018) Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep Purif Technol 194:462–469

    Article  Google Scholar 

  11. Mehdinia A, Vaighan DJ, Jabbari A (2018) Cation exchange superparamagnetic Al-based metal organic framework (Fe3O4/MIL-96(Al)) for high efficient removal of Pb(II) from aqueous solutions. ACS Sustain Chem Eng 6:3176–3186

    Article  CAS  Google Scholar 

  12. Rouhani F, Morsali A (2018) Fast and selective heavy metal removal by a novel metal-organic framework designed with in-situ ligand building block fabrication bearing free nitrogen. Chem Eur J. https://doi.org/10.1002/chem.201706016

    Article  Google Scholar 

  13. Shahat A, Hassan HMA, Azzazy HME, El-Sharkawy EA, Abdou HM, Awual MR (2017) Novel hierarchical composite adsorbent for selective lead(II) ions capturing from wastewater samples. Chem Eng J. https://doi.org/10.1016/j.cej.2017.09.040

    Article  Google Scholar 

  14. Wang Y, Chen HH, Tang J, Ye GQ, Ge HL, Hu XY (2015) Preparation of magnetic metal organic frameworks adsorbent modified with mercapto groups for the extraction and analysis of lead in food samples by flame atomic absorption spectrometry. Food Chem 181:191–197

    Article  CAS  Google Scholar 

  15. Tokalıoğlu Ş, Yavuz E, Demir S, Patat Ş (2017) Zirconium-based highly porous metal-organic framework (MOF-545) as an efficient adsorbent for vortex assisted-solid phase extraction of lead from cereal, beverage and water samples. Food Chem 237:707–715

    Article  Google Scholar 

  16. Millward AR, Yaghi OM (2005) Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J Am Chem Soc 127:17998–17999

    Article  CAS  Google Scholar 

  17. Ma YJ, Xu GH, Wei FD, Cen Y, Song YY, Shi ML, Xu XM, Sohail M, Hu Q (2018) Fluorescent zinc(II)-based metal–organic frameworks for nitroaromatics sensing. N J Chem 42:5162–5167

    Article  CAS  Google Scholar 

  18. Cui YJ, Yue YF, Qian GD, Chen BL (2012) Luminescent functional metalorganic frameworks. Chem Rev 112:1126–1162

    Article  CAS  Google Scholar 

  19. Li YH, Luo W, Qin N, Dong JP, Wei J, Li W, Feng SS, Chen JC, Xu JQ, Elzatahry AA, Es-Saheb MH, Deng YH, Zhao DY (2014) Highly ordered mesoporous tungsten oxides with a large pore size and crystalline framework for H2S sensing. Angew Chem Int Ed 53:9035–9040

    Article  CAS  Google Scholar 

  20. Xue M, Zhu GS, Li YX, Zhao XJ, Jin Z, Kang EH, Qiu SL (2008) Structure, hydrogen storage, and luminescence properties of three 3D metal-organic frameworks with NbO and PtS topologies. Cryst Growth Des 8:2478–2483

    Article  CAS  Google Scholar 

  21. Yantasee W, Rutledge RD, Chouyyok W, Sukwarotwat V, Orr G, Warner CL, Warner MG, Fryxell GE, Wiacek RJ, Timchalk C, Addleman RS (2010) Functionalized nanoporous silica for the removal of heavy metals from biological systems: adsorption and application. ACS Appl Mater Interfaces 2:2749–2758

    Article  CAS  Google Scholar 

  22. Ayati A, Tanhaei B, Sillanpaa M (2017) Lead(II)-ion removal by ethylenediaminetetraacetic acid ligand functionalized magnetic chitosan-aluminum oxide-iron oxide nanoadsorbents and microadsorbents: equilibrium, kinetics, and thermodynamics. J Appl Polym Sci 134:44360. https://doi.org/10.1002/APP.44360

    Article  Google Scholar 

  23. Kim KJ, Park JW (2017) Stability and reusability of amine-functionalized magnetic-cored dendrimer for heavy metal adsorption. J Mater Sci 52:843–857. https://doi.org/10.1021/es000013c

    Article  CAS  Google Scholar 

  24. Wu YZ, Xu GH, Liu W, Yang J, Wei FD, Li L, Zhang W, Hu Q (2015) Postsynthetic modification of copper terephthalate metal-organic frameworks and their new application in preparation of samples containing heavy metal ions. Micropor Mesopor Mat 210:110–115

    Article  CAS  Google Scholar 

  25. Wu YZ, Xu GH, Wei FD, Song Q, Tang T, Wang X, Hu Q (2016) Determination of Hg(II) in tea and mushroom samples based on metal-organic frameworks as solid phase extraction sorbents. Micropor Mesopor Mat 235:204–210

    Article  CAS  Google Scholar 

  26. Kim EJ, Lee CS, Chang YY, Chang YS (2013) Hierarchically structured manganese oxide-coated magnetic nanocomposites for the efficient removal of heavy metal ions from aqueous systems. ACS Appl Mater Interfaces 5:9628–9634

    Article  CAS  Google Scholar 

  27. Dada AO, Olalekan AP, Olatunya AM, Dada O (2012) Langmuir, Freundlich, Temkin and Dubi-nin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J Appl Chem 3:38–45

    Article  Google Scholar 

  28. Chung HK, Kim WH, Park J, Cho J, Jeong TY, Park PK (2015) Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. J Ind Eng Chem 28:241–246

    Article  CAS  Google Scholar 

  29. Tseng RL, Wu FC (2008) Inferring the favorable adsorption level and the concurrent multi-stage process with the Freundlich constant. J Hazard Mater 155:277–287

    Article  CAS  Google Scholar 

  30. Wu FC, Ling R, Juang RS (2001) Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res 35:613–618

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 61775099), the Natural Science Foundation of Jiangsu Province (No. BK20171487) and the Jiangsu University Student Innovation Training Program (No. 201610312004Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Ma, Y., Xu, G. et al. Synthesis of two novel H4TCPBDA-based metal–organic frameworks and their application in lead ion adsorption. J Mater Sci 54, 2093–2101 (2019). https://doi.org/10.1007/s10853-018-3008-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3008-7

Keywords

Navigation