Skip to main content

Advertisement

Log in

Magnetically hyper-cross-linked polymers with well-developed mesoporous: a broad-spectrum and highly efficient adsorbent for water purification

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel magnetically hyper-cross-linked polymer (Fe3O4@HCP-NH2) was prepared in this study, which combined the advantage of the amino-modified HCP-NH2 and the magnetic Fe3O4 nanoparticles. The Fe3O4@HCP-NH2 composite has a high specific surface area (532.62 m2 g−1), well-developed mesoporous (0.3786 cm3 g−1) and good magnetic property. This Fe3O4@HCP-NH2 composite exhibits excellent adsorption ability for tetracycline, and the maximum adsorption capacity calculated by Langmuir model at 298 K is up to 694 mg g−1. The adsorption mechanisms could be attributed to the complexation interactions, hydrogen bonding and cation exchange, and the dominant interaction was the surface complexation which was elucidated by X-ray photoelectron spectroscopy analysis. In addition, the composite can be rapidly separated and maintains high adsorption performance after five regeneration cycles. More importantly, it can be used as a broad-spectrum and highly efficient adsorbent for organic contaminants including methyl orange, methylene blue, bisphenol A and 2,4-dichlorophenol removal from contaminated water. This work demonstrated that the Fe3O4@HCP-NH2 composite would be the most promising candidates for application in the adsorption of organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 2
Figure 8

Similar content being viewed by others

References

  1. Petrović M, Gonzalez S, Barceló D (2003) Analysis and removal of emerging contaminants in wastewater and drinking water. Trends Anal Chem 22(10):685–696

    Article  Google Scholar 

  2. Bui XT, Vo TPT, Ngo HH, Guo WS, Nguyen TT (2016) Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. Sci Total Environ 563–564:1050–1067

    Article  Google Scholar 

  3. Shen J, Xue JJ, He GY, Ni J, Chen ZX, Tang B, Zhou ZW, Chen HQ (2018) Construction of 3D marigold-like Bi2WO6/Ag2O/CQDs heterostructure with superior visible-light active photocatalytic activity toward tetracycline degradation and selective oxidation. J Mater Sci 53(17):12040–12055. https://doi.org/10.1007/s10853-018-2479-x

    Article  CAS  Google Scholar 

  4. Gao P, Xu W, Ruan X, Qian Y, Xue G, Jia H (2018) Long-term impact of a tetracycline concentration gradient on the bacterial resistance in anaerobic-aerobic sequential bioreactors. Chemosphere 205:308–316

    Article  CAS  Google Scholar 

  5. Zhu Z, Zhang M, Wang W, Zhou Q, Liu F (2018) Efficient and synergistic removal of tetracycline and Cu(II) using novel magnetic multi-amine resins. Sci Rep 8(1):4762

    Article  Google Scholar 

  6. Mohan D, Singh KP, Singh VK (2008) Wastewater treatment using low cost activated carbons derived from agricultural byproducts—a case study. J Hazard Mater 152(3):1045–1053

    Article  CAS  Google Scholar 

  7. Minceva M, Fajgar R, Markovska L, Meshko V (2008) Comparative study of Zn2+, Cd2+, and Pb2+ removal from water solution using natural clinoptilolitic zeolite and commercial granulated activated carbon. Equilibrium of adsorption. Sep Sci Technol 43(8):2117–2143

    Article  CAS  Google Scholar 

  8. Budd PM, Ghanem BS, Makhseed S, Mckeown NB, Msayib KJ, Tattershall CE (2004) Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem Commun 2(2):230–231

    Article  Google Scholar 

  9. Han SS, Furukawa H, Yaghi OM (2008) Covalent organic frameworks as exceptional hydrogen storage materials. J Am Chem Soc 130(35):11580–11581

    Article  CAS  Google Scholar 

  10. Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F, Simmons JM (2010) Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem 121(50):9621–9624

    Article  Google Scholar 

  11. Germain J, Hradil J, Fréchet JMJ, Svec F (2006) High surface area nanoporous polymers for reversible hydrogen storage. Chem Mater 18(18):4430–4435

    Article  CAS  Google Scholar 

  12. Dawson R, Stevens LA, Drage TC, Snape CE, Smith MW, Adams DJ, Cooper AI (2012) Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents. J Am Chem Soc 134(26):10741–10744

    Article  CAS  Google Scholar 

  13. Li B, Gong R, Wang W, Huang X, Wang Z, Li H, Hu C, Tan B (2011) A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 44(8):2410–2414

    Article  CAS  Google Scholar 

  14. Bratkowska D, Davies A, Fontanals N, Cormack PA, Borrull F, Sherrington DC, Marcé RM (2015) Hypercrosslinked strong anion-exchange resin for extraction of acidic pharmaceuticals from environmental water. J Sep Sci 35(19):2621–2628

    Article  Google Scholar 

  15. Jia Z, Wang K, Li T, Tan B, Gu Y (2016) Functionalized hypercrosslinked polymers with knitted N-heterocyclic carbene-copper complexes as efficient and recyclable catalysts for organic transformations. Catal Sci Technol 6(12):4345–4355

    Article  CAS  Google Scholar 

  16. Yao S, Yang X, Yu M, Zhang Y, Jiang JX (2014) High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for CO2 capture. J Mater Chem A 2(21):8054–8059

    Article  CAS  Google Scholar 

  17. Huang J, Deng R, Huang K (2011) Equilibria and kinetics of phenol adsorption on a toluene-modified hyper-cross-linked poly(styrene-co-divinylbenzene) resin. Chem Eng J 171(3):951–957

    Article  CAS  Google Scholar 

  18. Zhang C, Zhu PC, Tan L, Liu JM, Tan B, Yang XL, Xu HB (2015) Triptycene-based hyper-cross-linked polymer sponge for gas storage and water treatment. Macromolecules 48(23):8509–8514

    Article  CAS  Google Scholar 

  19. Pan L, Xu MY, Liu ZL, Du BB, Yang KH, Wu L, He P, He YJ (2016) Facile method for the synthesis of Fe3O4@HCP core-shell porous magnetic microspheres for fast separation of organic dyes from aqueous solution. RSC Adv 6(53):47530–47535

    Article  CAS  Google Scholar 

  20. Li Q, Zhan Z, Jin S, Tan B (2017) Wettable magnetic hypercrosslinked microporous nanoparticle as an efficient adsorbent for water treatment. Chem Eng J 326:8509–8514

    Google Scholar 

  21. Shao L, Li Y, Zhang T, Liu M, Huang J (2017) Controllable synthesis of polar modified hyper-cross-linked resins and their adsorption of 2-naphthol and 4-hydroxybenzoic acid from aqueous solution. Ind Eng Chem Res 56(11):47530–47535

    Article  Google Scholar 

  22. Dawson R, Ratvijitvech T, Corker M, Laybourn A, Khimyak YZ, Cooper AI, Adams DJ (2012) Microporous copolymers for increased gas selectivity. Polym Chem 3(8):2034–2038

    Article  CAS  Google Scholar 

  23. Samanta P, Chandra P, Desai AV, Ghosh SK (2017) Chemically stable microporous hyper-cross-linked polymer (HCP): an efficient selective cationic dye scavenger from aqueous medium. Mater Chem Front 1(7):1384–1388

    Article  CAS  Google Scholar 

  24. He Y, Xu T, Hu J, Peng C, Yang Q, Wang H, Liu H (2017) Amine functionalized 3D porous organic polymer as an effective adsorbent for removing organic dyes and solvents. RSC Adv 7(48):30500–30505

    Article  CAS  Google Scholar 

  25. Shi S, Fan Y, Huang Y (2013) Facile low temperature hydrothermal synthesis of magnetic mesoporous carbon nanocomposite for adsorption removal of ciprofloxacin antibiotics. Ind Eng Chem Res 52(7):2604–2612

    Article  CAS  Google Scholar 

  26. Yang X, Li B, Majeed I, Liang L, Long X, Tan B (2013) Magnetic microporous polymer nanoparticles. Polym Chem 4(5):1425–1429

    Article  CAS  Google Scholar 

  27. Savva I, Marinica O, Papatryfonos C, Vekas L, Krasiachristoforou T (2015) Evaluation of electrospun polymer–Fe3O4 nanocomposite mats in malachite green adsorption. RSC Adv 5(21):16484–16496

    Article  CAS  Google Scholar 

  28. Jiang Z, Tijing LD, Amarjargal A, Park CH, An KJ, Shon HK, Kim CS (2015) Removal of oil from water using magnetic bicomponent composite nanofibers fabricated by electrospinning. Compos Part B 77:311–318

    Article  CAS  Google Scholar 

  29. Chen Y, Liu K (2016) Preparation and characterization of nitrogen-doped TiO2/diatomite integrated photocatalytic pellet for the adsorption-degradation of tetracycline hydrochloride using visible light. Chem Eng J 302:682–696

    Article  CAS  Google Scholar 

  30. Wang K, Jia Z, Yang X, Wang L, Gu Y, Tan B (2017) Acid and base coexisted heterogeneous catalysts supported on hypercrosslinked polymers for one-pot cascade reactions. J Catal 348:168–176

    Article  CAS  Google Scholar 

  31. Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, Xiong L, Gao Y, Li F, Zhao D (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew Chem Int Ed 48(32):5875–5879

    Article  CAS  Google Scholar 

  32. Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Zhang P, Shao C, Liu Y (2011) Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nanoscale 3(12):5034–5040

    Article  CAS  Google Scholar 

  33. Zhou G, Wang DW, Li F, Zhang L, Li N, Wu ZS, Wen L, Lu GQ, Cheng HM (2010) Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclic stability for lithium ion batteries. Chem Mater 22(18):5306–5313

    Article  CAS  Google Scholar 

  34. Minitha CR, Arachy MMS (2018) Influence of Fe3O4 nanoparticles decoration on dye adsorption and magnetic separation properties of Fe3O4/rGO nanocomposites. Sep Sci Technol. https://doi.org/10.1080/01496395.2018.1446986

    Article  Google Scholar 

  35. Ma Y, Zhou Q, Zhou S, Wang W, Jin J, Xie J, Li A, Shuang CA (2014) A bifunctional adsorbent with high surface area and cation exchange property for synergistic removal of tetracycline and Cu2+. Chem Eng J 258:26–33

    Article  CAS  Google Scholar 

  36. Li Q, Snoeyink VL, Mariñas BJ, Campos C (2003) Pore blockage effect of NOM on atrazine adsorption kinetics of PAC: the roles of PAC pore size distribution and NOM molecular weight. Water Res 37(20):4863–4872

    Article  CAS  Google Scholar 

  37. Guerra W, Silva-Caldeira PP, Terenzi H, Pereira-Maia EC (2016) Impact of metal coordination on the antibiotic and non-antibiotic activities of tetracycline-based drugs. Coord Chem Rev 327–328:188–199

    Article  Google Scholar 

  38. Gu C, Karthikeyan KG, Sibley SD, Pedersen JA (2007) Complexation of the antibiotic tetracycline with humic acid. Chemosphere 66(8):1494–1501

    Article  CAS  Google Scholar 

  39. Li W, Wang J, He G, Yu L, Noor N, Sun Y, Zhou X, Hu J, Parkin IP (2017) Enhanced adsorption capacity of ultralong hydrogen titanate nanobelts for antibiotics. J Mater Chem A 5(9):4352–4358

    Article  CAS  Google Scholar 

  40. Huang YM, Lee XQ, Grattieri M, Macazo FC, Cai R, Minteer SD (2018) A sustainable adsorbent for phosphate removal: modifying multi-walled carbon nanotubes with chitosan. J Mater Sci 53(17):12641–12649. https://doi.org/10.1007/s10853-018-2494-y

    Article  CAS  Google Scholar 

  41. Widiastuti N, Wu H, Ang HM, Zhang D (2011) Removal of ammonium from greywater using natural zeolite. Desalination 277(1):15–23

    Article  CAS  Google Scholar 

  42. Tian C, Zhao J, Zhang J, Chu S, Dang Z, Lin Z, Xing B (2017) Enhanced removal of roxarsone by Fe3O4@3D graphene nanocomposite: synergistic adsorption and mechanism. Environ Sci Nano 4(11):2134–2143

    Article  CAS  Google Scholar 

  43. Liu Q, Zhong LB, Zhao QB, Frear C, Zheng YM (2015) Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline. ACS Appl Mater Interfaces 7(27):14573–14583

    Article  CAS  Google Scholar 

  44. Zhang D, Niu H, Zhang X, Meng Z, Cai Y (2011) Strong adsorption of chlorotetracycline on magnetite nanoparticles. J Hazard Mater 192(3):1088–1093

    Article  CAS  Google Scholar 

  45. Jia D, Sun SP, Wu Z, Wang N, Jin Y, Dong W, Chen XD, Ke Q (2017) TCE degradation in groundwater by chelators-assisted Fenton-like reaction of magnetite: sand columns demonstration. J Hazard Mater 346:124–132

    Article  Google Scholar 

  46. Hashemikia S, Hemmatinejad N, Ahmadi E, Montazer M (2015) Optimization of tetracycline hydrochloride adsorption on amino modified SBA-15 using response surface methodology. J Colloid Interface Sci 443:105–114

    Article  CAS  Google Scholar 

  47. Kang J, Liu HJ, Zheng YM, Qu JH, Chen JP (2010) Systematic study of synergistic and antagonistic effects on adsorption of tetracycline and copper onto a chitosan. J Colloid Interface Sci 344(1):117–125

    Article  CAS  Google Scholar 

  48. Zhang L, Song X, Liu X, Yang L, Pan F, Lv J (2011) Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem Eng J 178(24):26–33

    Article  CAS  Google Scholar 

  49. Xiong W, Zeng G, Yang Z, Zhou Y, Zhang C, Cheng M, Liu Y, Hu L, Wan J, Zhou C (2018) Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53(Fe) as new adsorbent. Sci Total Environ 627:235–244

    Article  CAS  Google Scholar 

  50. Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah SM, Su X (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid Interface Sci 368(1):540–546

    Article  CAS  Google Scholar 

  51. Chen SQ, Chen YL, Jiang H (2017) Slow pyrolysis magnetization of hydrochar for effective and highly stable removal of tetracycline from aqueous solution. Ind Eng Chem Res 56(11):3059–3066

    Article  CAS  Google Scholar 

  52. Ma J, Yu F, Zhou L, Jin L, Yang M, Luan J, Tang Y, Fan H, Yuan Z, Chen J (2012) Enhanced adsorptive removal of methyl orange and methylene blue from aqueous solution by alkali-activated multiwalled carbon nanotubes. ACS Appl Mater Interfaces 4(11):5749–5760

    Article  CAS  Google Scholar 

  53. Xu L, Wang J (2012) Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles. Appl Catal B Environ 123–124(30):117–126

    Article  Google Scholar 

  54. Huang YQ, Wong CK, Zheng JS, Bouwman H, Barra R, Wahlström B, Neretin L, Wong MH (2012) Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42(1):91–99

    Article  CAS  Google Scholar 

  55. Ou HJ, Zhang W, Yang XF, Liao GY, Xia H, Wang DS (2018) One-pot synthesis of g-C3N4-doped rich-amine porous organic polymer for chlorophenol removal. Environ Sci Nano 5(1):169–182

    Article  CAS  Google Scholar 

  56. Shen X, Chen X, Sun D, Wu T, Li Y (2018) Fabrication of a magnetite/diazonium functionalized-reduced graphene oxide hybrid as an easily regenerated adsorbent for efficient removal of chlorophenols from aqueous solution. RSC Adv 8(14):7351–7360

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Scientific Foundation of China (21477118, 51478445) and the Open Projects Foundation (No. 1604) State Key Laboratory of Optical Fiber and Cable Manufacture Technology (YOFC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiying Liao or Dongsheng Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1480 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, A., Yang, X., You, Q. et al. Magnetically hyper-cross-linked polymers with well-developed mesoporous: a broad-spectrum and highly efficient adsorbent for water purification. J Mater Sci 54, 2712–2728 (2019). https://doi.org/10.1007/s10853-018-2967-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2967-z

Keywords

Navigation