Skip to main content
Log in

Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Metal–organic-frameworks (MOFs) (i.e., MOF(Fe), MOF(Co) and MOF(Cu)) were synthesized by a hydrothermal process. The prepared MOFs were characterized using X-ray diffraction, Fourier transform infrared spectroscopy and N2 adsorption–desorption. The catalytic activities of the MOFs for the electrochemical synthesis of ammonia were evaluated when using N2 (air) and water as raw materials at low temperature and ambient pressure. The results indicated that the prepared MOFs have fine crystalline structures, abundant micropores, and large specific surface areas. The prepared MOFs showed excellent catalytic activity for the electrochemical synthesis of ammonia at low temperature and ambient pressure. Among these MOFs, the MOF(Fe) displayed the best catalytic activity, and the highest ammonia formation rate and the highest current efficiency reached 2.12 × 10−9 mol s−1 cm−2 and 1.43%, respectively, at 1.2 V and 90 °C, when using pure N2 and water as raw materials. The prepared MOFs in this work showed remarkable catalytic activities for the electrochemical synthesis of ammonia at low temperature and ambient pressure among the non-noble metal catalysts. It was the first exploration to apply MOFs as the electrocatalysts for the electrochemical synthesis of ammonia at low temperature and ambient pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Marnellos G, Stoukides M (1998) Ammonia synthesis at atmospheric pressure. Science 282:98–100

    Article  Google Scholar 

  2. Liu HZ (2014) Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge. Chin J Catal 35:1619–1640

    Article  Google Scholar 

  3. Skodra A, Stoukides M (2009) Electrocatalytic synthesis of ammonia from steam and nitrogen at atmospheric pressure. Solid State Ion 180:1332–1336

    Article  Google Scholar 

  4. Tanabe Y, Nishibayashi Y (2013) Developing more sustainable processes for ammonia synthesis. Coord Chem Rev 257:2551–2564

    Article  Google Scholar 

  5. Lan R, Tao S (2013) Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4 + mixed conducting electrolyte. RSC Adv 3:18016–18021

    Article  Google Scholar 

  6. Giddey S, Badwal SPS, Kulkarni A (2013) Review of electrochemical ammonia production technologies and materials. Int J Hydrog Energy 38:14576–14594

    Article  Google Scholar 

  7. Schrauzer GN, Guth TD (1977) Photolysis of water and photoreduction of nitrogen on titanium-dioxide. J Am Chem Soc 99:7189–7193

    Article  Google Scholar 

  8. Kim J, Rees DC (1992) Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from azotobacter vinelandii. Nature 360:553–560

    Article  Google Scholar 

  9. Zhang ZF, Zhong ZP, Liu RQ (2010) Cathode catalysis performance of SmBaCuMO(5+δ) (M = Fe, Co, Ni) in ammonia synthesis. J Rare Earth 28:556–559

    Article  Google Scholar 

  10. Wang Z, Lin J, Wang R, Wei K (2013) Ammonia synthesis over ruthenium catalyst supported on perovskite type BaTiO3. Catal Commun 32:11–14

    Article  Google Scholar 

  11. Brewer AK, Miller RR (1931) The synthesis of ammonia in the low voltage arc. J Am Chem Soc 53:2968–2978

    Article  Google Scholar 

  12. Murakami T, Nishikiori T, Nohira T, Ito Y (2003) Electrolytic synthesis of ammonia in molten salts under atmospheric pressure. J Am Chem Soc 125:334–335

    Article  Google Scholar 

  13. Amar IA, Petit CTG, Mann G, Lan R, Skabara PJ, Tao S (2014) Electrochemical synthesis of ammonia from N2 and H2O based on (Li,Na,K)2CO3-Ce0.8Gd0.18Ca0.02O2−δ composite electrolyte and CoFe2O4 cathode. Int J Hydrog Energy 39:4322–4330

    Article  Google Scholar 

  14. Wang WB, Cao XB, Gao WJ, Zhang F, Wang HT, Ma GL (2010) Ammonia synthesis at atmospheric pressure using a reactor with thin solid electrolyte BaCe0.85Y0.15O3−α membrane. J Membr Sci 360:397–403

    Article  Google Scholar 

  15. Amar IA (2014) Electrochemical synthesis of ammonia from wet nitrogen using La0.6Sr0.4FeO3−δ -Ce0.8Gd0.18Ca0.02O2−δ composite cathode. RSC Adv 4:18749–18754

    Article  Google Scholar 

  16. Vasileiou E, Kyriakou V, Garagounis I, Vourros A, Stoukides M (2015) Ammonia synthesis at atmospheric pressure in a BaCe0.2Zr0.7Y0.1O2.9 solid electrolyte cell. Solid State Ion 275:110–116

    Article  Google Scholar 

  17. You Z, Inazu K, Aika KI, Baba T (2007) Electronic and structural promotion of barium hexaaluminate as a ruthenium catalyst support for ammonia synthesis. J Catal 251:321–331

    Article  Google Scholar 

  18. Xie YH, Wang JD, Liu RQ, Su XT, Sun ZP, Li ZJ (2004) Preparation of La1.9Ca0.1Zr2O6.95 with pyrochlore structure and its application in synthesis of ammonia at atmospheric pressure. Solid State Ion 168:117–121

    Article  Google Scholar 

  19. Liu RQ, Xie YH, Wang JD, Li ZJ, Wang BH (2006) Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2−δ (M = La, Y, Gd, Sm) and their proton conduction at intermediate temperature. Solid State Ion 177:73–76

    Article  Google Scholar 

  20. Zhang M, Xu J, Ma G (2011) Proton conduction in BaxCe0.8Y0.2O3−α  + 0.04ZnO at intermediate temperatures and its application in ammonia synthesis at atmospheric pressure. J Mater Sci 46:4690–4694. doi:10.1007/s10853-011-5376-0

    Article  Google Scholar 

  21. Cui B, Zhang J, Liu S, Liu X, Xiang W, Liu L et al (2017) Electrochemical synthesis of ammonia directly from N2 and water over iron-based catalysts supported on activated carbon. Green Chem 19:298–304

    Article  Google Scholar 

  22. Li FF, Licht S (2014) Advances in understanding the mechanism and improved stability of the synthesis of ammonia from air and water in hydroxide suspensions of nanoscale Fe2O3. Inorg Chem 53:10042–10044

    Article  Google Scholar 

  23. Liu HZ, Li XN, Hu ZN (1996) Development of novel low temperature and low pressure ammonia synthesis catalyst. Appl Catal A Gen 27:209–222

    Article  Google Scholar 

  24. Yiokari CG, Pitselis GE, Polydoros DG, And ADK, Vayenas CG (2000) High-pressure electrochemical promotion of ammonia synthesis over an industrial iron catalyst. J Phys Chem A 104:10600–10602

    Article  Google Scholar 

  25. Lan R, Alkhazmi KA, Amar IA, Tao S (2014) Synthesis of ammonia directly from wet air at intermediate temperature. Appl Catal B Environ 152:212–217

    Article  Google Scholar 

  26. Rod TH, Logadottir A, Nørskov JK (2000) Ammonia synthesis at low temperatures. J Chem Phys 112:5343–5347

    Article  Google Scholar 

  27. Köleli F, Röpke T (2006) Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode. Appl Catal. B Environ 62:306–310

    Article  Google Scholar 

  28. Ertl G (1990) Elementary steps in heterogeneous catalysis. Angew Chem Int Ed 29:1219–1227

    Article  Google Scholar 

  29. Lan R, Irvine JT, Tao S (2013) Synthesis of ammonia directly from air and water at ambient temperature and pressure. Sci Rep 3:1–7

    Article  Google Scholar 

  30. Mališ J, Mazúr P, Paidar M et al (2016) Nafion 117 stability under conditions of PEM water electrolysis at elevated temperature and pressure. Int J Hydrog Energy 41:2177–2188

    Article  Google Scholar 

  31. Inoue Y, Kitano M, Kim SW, Yokoyama T, Hara M, Hosono H (2014) Highly dispersed Ru on electride [Ca24Al28O64] +4 (e)4 as a catalyst for ammonia synthesis. ACS Catal 4:674–680

    Article  Google Scholar 

  32. Kitano M, Inoue Y, Yamazaki Y, Hayashi F, Kanbara S, Matsuishi S et al (2012) Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat Chem 4:934–940

    Article  Google Scholar 

  33. Yun DS, Joo JH, Yu JH, Yoon HC, Kim JN, Yoo CY (2015) Electrochemical ammonia synthesis from steam and nitrogen using proton conducting yttrium doped barium zirconate electrolyte with silver, platinum, and lanthanum strontium cobalt ferrite electrocatalyst. J Power Sources 284:245–251

    Article  Google Scholar 

  34. Hasnat MA, Karim MR, Machida M (2009) Electrocatalytic ammonia synthesis: role of cathode materials and reactor configuration. Catal Commun 10:1975–1979

    Article  Google Scholar 

  35. Karolewska M, Truszkiewicz E, Wściseł M, Mierzwa B, Kępiński L, Raróg-Pilecka W (2013) Ammonia synthesis over a Ba and Ce-promoted carbon supported cobalt catalyst. Effect of the cerium addition and preparation procedure. J Catal 303:130–134

    Article  Google Scholar 

  36. Renner JN, Greenlee LF, Ayres KE, Herring AM (2015) Electrochemical synthesis of ammonia: a low pressure, low temperature approach. Electrochem Soc Interface 24:51–57

    Article  Google Scholar 

  37. Tran UPN, Le KKA, Phan NTS (2011) Expanding applications of metal-organic frameworks: zeolite imidazolate framework ZIF-8 as an efficient heterogeneous catalyst for the knoevenagel reaction. ACS Catal 1:120–127

    Article  Google Scholar 

  38. Ranft A, Betzler SB, Haase F et al (2013) Additive-mediated size control of MOF nanoparticles. CrystEngComm 15:9296–9300

    Article  Google Scholar 

  39. Wang H, Yin F, Chen B, Li G (2015) Synthesis of an ε-MnO2/metal-organic-framework composite and its electrocatalysis towards oxygen reduction reaction in an alkaline electrolyte. J Mater Chem A 3:322–335

    Google Scholar 

  40. Hasan Z, Jeon J, Jhung SH (2012) Adsorptive removal of naproxen and clofibric acid from water using metal-organic frameworks. J Hazard Maters 209–210:151–157

    Article  Google Scholar 

  41. Wang H, Yin F, Li G, Chen B, Wang Z (2014) Preparation, characterization and bifunctional catalytic properties of MOF(Fe/Co) catalyst for oxygen reduction/evolution reactions in alkaline electrolyte. Int J Hydrog Energy 39:16179–16186

    Article  Google Scholar 

  42. Qiang RR (2006) The effect of potassium sodium tartrate solutions on ammonia standard curves. Environ Monit China 22:40–41

    Google Scholar 

  43. Guo X, Xing T, Lou Y, Chen J (2015) Controlling ZIF-67 crystals formation through various cobalt sources in aqueous solution. J Solid State Chem 235:107–112

    Article  Google Scholar 

  44. Lan R, Alkhazmi KA, Amar IA, Tao S (2014) Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3−δ as catalyst. Electrochim Acta 123:582–587

    Article  Google Scholar 

  45. Amar IA, Petit CTG, Zhang L, Lan R, Skabara PJ, Tao S (2011) Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovskite cathode. Solid State Ion 201:94–100

    Article  Google Scholar 

  46. Kordali V, Kyriacou G, Lambrou C (2000) Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Chem Commun 17:1673–1674

    Article  Google Scholar 

  47. Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Ouml E et al (1999) Role of steps in N2 activation on Ru(0001). Phys Rev Lett 83:1814–1817

    Article  Google Scholar 

  48. Leigh GJ (2002) Protonation of coordinated dinitrogen. Acc Chem Res 25:177–181

    Article  Google Scholar 

  49. Whitman LJ, Bartosch CE, Ho W, Strasser G, Grunze M (1986) Alkali-metal promotion of a dissociation precursor: N2 on Fe(111). Phys Rev Let 56:1984–1987

    Article  Google Scholar 

  50. Aika KI (1995) Ammonia synthesis over non-iron catalysts and related phenomena. Springer, Berlin Heidelberg

    Book  Google Scholar 

  51. Chen Y, Zhou Y, Wang H, Lu J, Uchida T, Xu Q et al (2015) Multifunctional PdAg@MIL-101 for one-pot cascade reactions: combination of host-guest cooperation and bimetallic synergy in catalysis. ACS Catal 5:2062–2069

    Article  Google Scholar 

  52. Vermoortele F, Bueken B, Le Bars G, Van de Voorde B, Vandichel M, Houthoofd K et al (2013) Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66(Zr). J Am Chem Soc 135:11465–11468

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Natural Science Foundation of China (21276018), the Natural Science Foundation of Jiangsu Province of China (BK20140268 and BK20161200), Fundamental Research Funds for the Central Universities (buctrc201526), Changzhou Sci & Tech Program (CJ20159006 and CJ20160007), and the Advanced Catalysis and Green Manufacturing Collaborative Innovation Centre of Changzhou University (ACGM2016-06-02, ACGM2016-06-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengxiang Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Yin, F., Liu, N. et al. Highly efficient metal–organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure. J Mater Sci 52, 10175–10185 (2017). https://doi.org/10.1007/s10853-017-1176-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1176-5

Keywords

Navigation