Skip to main content
Log in

Arsenic adsorption on cobalt and manganese ferrite nanoparticles

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The adsorption of As(III) on cobalt and manganese ferrite nanoparticles (NPs) was studied. The ferrite NPs were synthesized using the Massart-assisted microwave hydrothermal treatment. All the NPs exhibited the spinel structure with a formula such as M x Fe3−x O4, where M = Co or Mn, and x runs from 0.21 to 1.14. The changes in the stoichiometry caused different effects on the physical properties as well on the As(III) adsorption capacity of the NPs. The adsorption data were fitted in very good agreement with the Freundlich model. It was concluded that As(III) was better attracted to ferrimagnetic cobalt ferrite NPs, given that the arsenic removal was significantly higher than that exhibited by superparamagnetic manganese-substituted ferrite NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. U. S. Environmental Protection Agency (1994) Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. Cincinnati, Ohio

  2. International Agency for Research on Cancer (1987) Arsenic and arsenic compounds. In: IARC IARC Monogr Eval Carcinog Risks to Humans - Overall Eval Carcinog An Updat IARC Mongraphs. p 100

  3. Litter MI, Morgada ME, Bundschuh J (2010) Possible treatments for arsenic removal in Latin American waters for human consumption. Environ Pollut 158:1105–1118. doi:10.1016/j.envpol.2010.01.028

    Article  Google Scholar 

  4. Bissen M, Frimmel FH (2003) Arsenic—a review. Part II: Oxidation of arsenic and its removal in water treatment. Acta Hydrochim Hydrobiol 31:97–107. doi:10.1002/aheh.200300485

    Article  Google Scholar 

  5. Ning RY (2002) Arsenic removal by reverse osmosis. Desalination 143:237–241. doi:10.1016/S0011-9164(02)00262-X

    Article  Google Scholar 

  6. Uddin MT, Mozumder MSI, Islam MA et al (2007) Nanofiltration membrane process for the removal of arsenic from drinking water. Chem Eng Technol 30:1248–1254. doi:10.1002/ceat.200700169

    Article  Google Scholar 

  7. Simeonidis K, Gkinis T, Tresintsi S et al (2011) Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbents. Chem Eng J 168:1008–1015. doi:10.1016/j.cej.2011.01.074

    Article  Google Scholar 

  8. Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53. doi:10.1016/j.jhazmat.2007.01.006

    Article  Google Scholar 

  9. Zou Y, Wang X, Khan A et al (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50:7290–7304. doi:10.1021/acs.est.6b01897

    Article  Google Scholar 

  10. Lata S, Samadder SR (2016) Removal of arsenic from water using nano adsorbents and challenges: a review. J Environ Manag 166:387–406. doi:10.1016/j.jenvman.2015.10.039

    Article  Google Scholar 

  11. Liu C-H, Chuang Y-H, Chen T-Y et al (2015) Mechanism of arsenic adsorption on magnetite nanoparticles from water: thermodynamic and spectroscopic studies. Environ Sci Technol 49:7726–7734. doi:10.1021/acs.est.5b00381

    Article  Google Scholar 

  12. Kokate M, Garadkar K, Gole A (2013) One pot synthesis of magnetite–silica nanocomposites: applications as tags, entrapment matrix and in water purification. J Mater Chem A 1:2022–2029. doi:10.1039/C2TA00951J

    Article  Google Scholar 

  13. Swindle AL, Madden ASE, Cozzarelli IM, Benamara M (2014) Size-dependent reactivity of magnetite nanoparticles: a field-laboratory comparison. Environ Sci Technol 48:11413–11420. doi:10.1021/es500172p

    Article  Google Scholar 

  14. Parsons JG, Lopez ML, Peralta-Videa JR, Gardea-Torresdey JL (2009) Determination of arsenic(III) and arsenic(V) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents. Microchem J 91:100–106. doi:10.1016/j.microc.2008.08.012

    Article  Google Scholar 

  15. Zhang S, Niu H, Cai Y et al (2010) Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem Eng J 158:599–607. doi:10.1016/j.cej.2010.02.013

    Article  Google Scholar 

  16. Calero-DdelC VL, Rinaldi C (2007) Synthesis and magnetic characterization of cobalt-substituted ferrite (Co x Fe3−x O4) nanoparticles. J Magn Magn Mater 314:60–67. doi:10.1016/j.jmmm.2006.12.030

    Article  Google Scholar 

  17. Cui HJ, Cai JK, Zhao H et al (2014) Fabrication of magnetic porous Fe–Mn binary oxide nanowires with superior capability for removal of As(III) from water. J Hazard Mater 279:26–31. doi:10.1016/j.jhazmat.2014.06.054

    Article  Google Scholar 

  18. Magoda C, Nomngongo PN, Mabuba N (2016) Magnetic iron-cobalt/silica nanocomposite as adsorbent in micro solid-phase extraction for preconcentration of arsenic in environmental samples. Microchem J 128:242–247. doi:10.1016/j.microc.2016.05.005

    Article  Google Scholar 

  19. Kumar S, Nair RR, Pillai PB et al (2014) Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces. doi:10.1021/am504826q

    Google Scholar 

  20. Dey A, Singh R, Purkait MK (2014) Cobalt ferrite nanoparticles aggregated schwertmannite: a novel adsorbent for the efficient removal of arsenic. J Water Process Eng 3:1–9. doi:10.1016/j.jwpe.2014.07.002

    Article  Google Scholar 

  21. Ahmed MA, Okasha N, El-Dek SI (2008) Preparation and characterization of nanometric Mn ferrite via different methods. Nanotechnology 19:65603. doi:10.1088/0957-4484/19/6/065603

    Article  Google Scholar 

  22. El-Okr MM, Salem MA, Salim MS et al (2011) Synthesis of cobalt ferrite nano-particles and their magnetic characterization. J Magn Magn Mater 323:920–926. doi:10.1016/j.jmmm.2010.11.069

    Article  Google Scholar 

  23. Li AY, Kaushik M, Li CJ, Moores A (2016) Microwave-assisted synthesis of magnetic carboxymethyl cellulose-embedded Ag-Fe3O4 nanocatalysts for selective carbonyl hydrogenation. ACS Sustain Chem Eng 4:965–973. doi:10.1021/acssuschemeng.5b01048

    Article  Google Scholar 

  24. Lutterotti L, Scardi P (1990) Simultaneous structure and size–strain refinement by the Rietveld method. J Appl Crystallogr 23:246–252. doi:10.1107/S0021889890002382

    Article  Google Scholar 

  25. McKay G (1995) Use of Adsorbents for the Removal of Pollutants from Wastewater. CRC Press, Boca Raton

    Google Scholar 

  26. Camacho KI, Pariona N, Martinez AI et al (2017) Structural and magnetic properties of the products of the transformation of ferrihydrite: effect of cobalt dications. J Magn Magn Mater 429:339–347. doi:10.1016/j.jmmm.2017.01.035

    Article  Google Scholar 

  27. Yu Y, Mendoza-Garcia A, Ning B, Sun S (2013) Cobalt-substituted magnetite nanoparticles and their assembly into ferrimagnetic nanoparticle arrays. Adv Mater 25:3090–3094. doi:10.1002/adma.201300595

    Article  Google Scholar 

  28. Hua J, Liu M, Wang L et al (2013) Effect of Co2+ content on the magnetic properties of Co x Fe3−x O4/SiO2 nanocomposites. Hyperfine Interact 219:41–48. doi:10.1007/s10751-012-0702-8

    Article  Google Scholar 

  29. Silva-Silva MJ, Mijangos-Ricardez OF, Vázquez-Hipólito V et al (2014) Single and mixed adsorption of Cd(II) and Cr(VI) onto citrate-coated magnetite nanoparticles. Desalin Water Treat 57:4008–4017. doi:10.1080/19443994.2014.991756

    Article  Google Scholar 

  30. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. doi:10.1016/j.cej.2009.09.013

    Article  Google Scholar 

  31. Ho YS, Porter JF, McKay G (2002) Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollut 141:1–33. doi:10.1023/A:1021304828010

    Article  Google Scholar 

Download references

Acknowledgements

This work was former financially supported by PRODEP “Apoyo a la Incorporación de Nuevos PTC 2014,” DAIT/2014/09, SEP-CONACYT CB-2010-157232, and SEP-CONACYT CB-2012-01-181592. The authors gratefully acknowledge Soledad Cruz and Miguel Bautista for ICP–OES technical support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Martinez-Vargas or J. López-Luna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Vargas, S., Martínez, A.I., Hernández-Beteta, E.E. et al. Arsenic adsorption on cobalt and manganese ferrite nanoparticles. J Mater Sci 52, 6205–6215 (2017). https://doi.org/10.1007/s10853-017-0852-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0852-9

Keywords

Navigation